Was bedeuten die ableitungen

Erste Ableitung

Die Ableitung einer Funktion bildet die Steigung der Funktion in einer weiteren Funktion ab. Um dies zu verdeutlichen, schauen wir uns zwei Beispiele an. Beginnen wir mit einem einfachen Beispiel: Die lineare Funktion $f(x) = 3x+5$ hat in jedem Punkt die Steigung $3$. Damit ist die Ableitung der Funktion $f'(x) = 3$. Die Steigung ist in jedem Punkt gleich.

Bei quadratischen Funktionen wird es schon etwas schwieriger, da hier die Steigung in jedem Punkt unterschiedlich ist. Die Normalparabel hat die Funktion $g(x) = x^2$. Die zugehörige Ableitung lautet: $g'(x) = 2x$. Betrachten wir dies in einer Abbildung:

Abbildung: Funktion $g(x) = x^2$ und deren Ableitung $g'(x) = 2x$

Wir sehen die Funktion in Grün und deren Ableitung in Rot. Also beschreibt die rote Funktion die Steigung der grünen Funktion in jedem Punkt. Nehmen wir den Punkt $P(0/0)$. Die Funktion hat hier einen Tiefpunkt. Die Steigung ist an dieser Stelle gleich null. Vergleichen wir dies mit der Ableitungsfunktion, dann erkennen wir, dass die rote Funktion an der Stelle $x=0$ den y-Wer $0$ hat. Also kann man durch Ablesen der Punkte der Ableitung die Steigung im zugehörigen Punkt bestimmen. Die y-Werte der Ableitungsfunktion entsprechen der Steigung der Ausgangsfunktion in den dazugehörigen x-Werten.

Betrachten wir einen weiteren Punkt: $Q(1/1)$. Welche Steigung hat die Normalparabel in diesem Punkt? 

Diese Steigung können wir am roten Graphen ablesen. Er hat an der Stelle $x = 1$ den Wert $2$. Also ist die Steiung der Parabel an der Stelle $1$ gleich $2$.

Da die Ableitung Informationen über die Steigung liefert, können damit folgende Dinge bestimmt werden:

  • Ist $f'(x_1)\textcolor{red}{=}0$ dann ist $f(x)$ an der Stelle $x_1$ waagerecht.
  • Ist $f'(x_2)\textcolor{blue}{>}0$ dann ist $f(x)$ an der Stelle $x_2$ monoton steigend.
  • Ist $f'(x_3)\textcolor{orange}{<}0$ dann ist $f(x)$ an der Stelle $x_3$ monoton fallend.

Bedeutung der zweiten Ableitung

Die zweite Ableitung bildet die Steigung der ersten Ableitung ab. Wir bestimmen sie, indem wir die Funktion der ersten Ableitung ableiten. Für die beiden oberen Beispiele bedeutet dies:
lineare Funktion: $f'(x) = 3, f''(x) = 0$
quadratische Funktion $f'(x) = 2x, f''(x) = 2$

Hochpunkt, Tiefpunkt und Sattelpunkt berechnen

An der Stelle, wo der Graph waagerecht ($f'(x) = 0$) verläuft, liegt entweder ein Hoch-, Tief- oder Sattelpunkt. Um diesen Punkt zu bestimmen, geht man wie folgt vor:

Methode

Methode

Hier klicken zum Ausklappen

Vorgehensweise Hochpunkt, Tiefpunkt oder Sattelpunkt bestimmen:

  1. Die erste und zweite Ableitung der Funktion bestimmen.
  2. Die erste Ableitung gleich null setzten und die Lösungen für $x$ bestimmen.
  3. Die zuvor berechneten Werte in die zweite Ableitung einsetzten, für das jeweilige Ergebnis gilt:
  • $f''(x) < 0 \rightarrow$ Hochpunkt
  • $f''(x) > 0 \rightarrow$ Tiefpunkt
  • $f''(x) = 0 \rightarrow$ Sattelpunkt (notwendiges Kriterium)

Hochpunkt, Tiefpunkt und Sattelpunkt

Ableitungsregeln in Mathe

Hier erhältst du eine Übersicht über die gängigen Ableitungsregeln. Möchtest du darüber mehr erfahren, klicke hier: Ableitungsregeln

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Potenzregel: $f(x)= x^n~~~~~~~~~~~~~~~~~~~~~ \rightarrow~~ f'(x)= n \cdot x ^{n-1}$

Faktorregel: $f(x)= k \cdot g(x) ~~~~~~~~~~~~~~\rightarrow~~ f'(x)= k \cdot g'(x)$

Summenregel: $f(x)=g(x)+k(x) ~~~\rightarrow ~~f'(x)= g'(x)+k'(x)$

Produktregel: $f(x) = u(x) \cdot v(x)~~~~~~~ \rightarrow~~ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$

Kettenregel: $f(x)= u(b(x)) ~~~~~~~~~~~~~~\rightarrow~~ f'(x)= u'(b(x)) \cdot b'(x)$

Quotientenregel: $f(x)= \frac{u(x)}{v(x)}~~~~~~~~~~~~ \rightarrow~~ f'(x)= \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2}$

Mit den Übungsaufgaben kannst du dein Wissen über die Bedeutung von Ableitungen im Sachzusammenhang weiter vertiefen. Viel Erfolg dabei!

Video: Fabian Serwitzki

Text: Chantal Rölle

Was sagt die 3 Ableitungen aus?

Ableitung ein. Wenn dabei etwas ungleich null herauskommt, dann handelt es sich um eine Wendestelle. (Wenn an einer solchen Stelle die 3. Ableitung null ergibt, dann muss man über das Krümmungsverhalten von f f feststellen, ob es sich um eine Wendestelle handelt.)

Was sagt die zweite Ableitung aus?

Die zweite Ableitung im Vergleich mit der ersten Ableitung ◦ Die erste Ableitung f'(x) sagt etwas über die Steigung der ursprünglichen Funktion f(x). ◦ Die zweite Ableitung f''(x) sagt etwas über die Krümmung der ursprünglichen Funktion f(x).

Was sagt die vierte Ableitung aus?

Sie ist die Steigungsfunktion der Geschwindigkeit, gibt also die Änderung der Geschwindigkeit, d.h. die Beschleunigung an.

Toplist

Neuester Beitrag

Stichworte