A property that allows a tissue to return to normal following deformation is known as

  • Aglietti P, Buzzi R, Giron F, Simeone AJ, Zaccherotti G: Arthroscopic-assisted anterior cruciate ligament reconstruction with the central third patellar tendon. A 5–8-year follow-up. Knee Surg Sports Traumatol Arthrosc. 1997, 5: 138-144. 10.1007/s001670050041.

    CAS  PubMed  Google Scholar 

  • Bach BR, Tradonsky S, Bojchuk J, Levy ME, Bush-Joseph CA, Khan NH: Arthroscopically assisted anterior cruciate ligament reconstruction using patellar tendon autograft. Five- to nine-year follow-up evaluation. Am J Sports Med. 1998, 26: 20-29.

    PubMed  Google Scholar 

  • Jomha NM, Borton DC, Clingeleffer AJ, Pinczewski LA: Long-term osteoarthritic changes in anterior cruciate ligament reconstructed knees. Clin Orthop Relat Res. 1999, 188-193.

    Google Scholar 

  • Jomha NM, Pinczewski LA, Clingeleffer A, Otto DD: Arthroscopic reconstruction of the anterior cruciate ligament with patellar-tendon autograft and interference screw fixation. The results at seven years. J Bone Joint Surg Br. 1999, 81: 775-779. 10.1302/0301-620X.81B5.8644.

    CAS  PubMed  Google Scholar 

  • Ritchie JR, Parker RD: Graft selection in anterior cruciate ligament revision surgery. Clin Orthop Relat Res. 1996, 65-77. 10.1097/00003086-199604000-00008.

    Google Scholar 

  • Woo SL-Y, Renstrom P, Arnoczky SP, Eds: Tendinopathy in Athletes. 2007, Blackwell Publishing

  • Kannus P: Tendons–a source of major concern in competitive and recreational athletes. Scand J Med Sci Sports. 1997, 7: 53-54.

    CAS  PubMed  Google Scholar 

  • Renstrom P: Sports traumatology today. A review of common current sports injury problems. Ann Chir Gynaecol. 1991, 80: 81-93.

    CAS  PubMed  Google Scholar 

  • James SL, Bates BT, Osternig LR: Injuries to runners. Am J Sports Med. 1978, 6: 40-50. 10.1177/036354657800600202.

    CAS  PubMed  Google Scholar 

  • Lysholm J, Wiklander J: Injuries in runners. Am J Sports Med. 1987, 15: 168-171. 10.1177/036354658701500213.

    CAS  PubMed  Google Scholar 

  • Teitz CC, Garrett WE, Miniaci A, Lee MH, Mann RA: Tendon problems in athletic individuals. Instr Course Lect. 1997, 46: 569-582.

    CAS  PubMed  Google Scholar 

  • Miyasaka KC, Daniel DM, Stone ML, et al: The incidence of knee ligament injuries in the general population. Am J Knee Surg. 1991, 4: 3-8.

    Google Scholar 

  • Beaty J: Knee and leg: soft tissue trauma. OKU orthopaedic knowledge update. Edited by: Arendt EA. 1999, Rosemont, IL: American Academy of Orthopaedic Surgeons, xix, 442, 1

    Google Scholar 

  • Hovelius L: Incidence of shoulder dislocation in Sweden. Clin Orthop Relat Res. 1982, 127-131.

    Google Scholar 

  • United States Census Bureau: United States Census 2000. 2000

    Google Scholar 

  • Sher JS, Uribe JW, Posada A, Murphy BJ, Zlatkin MB: Abnormal findings on magnetic resonance images of asymptomatic shoulders. J Bone Joint Surg Am. 1995, 77: 10-15.

    CAS  PubMed  Google Scholar 

  • Lehman C, Cuomo F, Kummer FJ, Zuckerman JD: The incidence of full thickness rotator cuff tears in a large cadaveric population. Bull Hosp Jt Dis. 1995, 54: 30-31.

    CAS  PubMed  Google Scholar 

  • Frank C, Woo SL-Y, Amiel D, Harwood F, Gomez M, Akeson W: Medial collateral ligament healing. A multidisciplinary assessment in rabbits. Am J Sports Med. 1983, 11: 379-389. 10.1177/036354658301100602.

    CAS  PubMed  Google Scholar 

  • Indelicato PA: Non-operative treatment of complete tears of the medial collateral ligament of the knee. J Bone Joint Surg Am. 1983, 65: 323-329.

    CAS  PubMed  Google Scholar 

  • Jokl P, Kaplan N, Stovell P, Keggi K: Non-operative treatment of severe injuries to the medial and anterior cruciate ligaments of the knee. J Bone Joint Surg Am. 1984, 66: 741-744.

    CAS  PubMed  Google Scholar 

  • Kannus P: Long-term results of conservatively treated medial collateral ligament injuries of the knee joint. Clin Orthop Relat Res. 1988, 103-112.

    Google Scholar 

  • Ohland KJ, Woo SL-Y, Weiss JA, Takai S, Shelley FJ: Healing of Combined Injuries of the Rabbit Medial Collateral Ligament and Its Insertions: A Long Term Study on the Effects of Conservative vs. Surgical Treatment. The Winter Annual Meeting of the American Society of Mechanical Engineers; Atlanta, GA. Edited by: Vanderby R. 1991, 447-448.

    Google Scholar 

  • Scheffler SU, Clineff TD, Papageorgiou CD, Debski RE, Benjamin C, Woo SL-Y: Structure and function of the healing medial collateral ligament in a goat model. Ann Biomed Eng. 2001, 29: 173-180. 10.1114/1.1349701.

    CAS  PubMed  Google Scholar 

  • Weiss JA, Woo SL-Y, Ohland KJ, Horibe S, Newton PO: Evaluation of a new injury model to study medial collateral ligament healing: primary repair versus nonoperative treatment. Journal of Orthopaedic Research. 1991, 9: 516-528. 10.1002/jor.1100090407.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Gomez MA, Inoue M, Akeson WH: New experimental procedures to evaluate the biomechanical properties of healing canine medial collateral ligaments. J Orthop Res. 1987, 5: 425-432. 10.1002/jor.1100050315.

    CAS  PubMed  Google Scholar 

  • Hart RA, Woo SL-Y, Newton PO: Ultrastructural morphometry of anterior cruciate and medial collateral ligaments: an experimental study in rabbits. J Orthop Res. 1992, 10: 96-103. 10.1002/jor.1100100112.

    CAS  PubMed  Google Scholar 

  • Niyibizi C, Kavalkovich K, Yamaji T, Woo SL-Y: Type V collagen is increased during rabbit medial collateral ligament healing. Knee Surg Sports Traumatol Arthrosc. 2000, 8: 281-285. 10.1007/s001670000134.

    CAS  PubMed  Google Scholar 

  • Abramowitch SD, Papageorgiou CD, Debski RE, Clineff TD, Woo SL-Y: A biomechanical and histological evaluation of the structure and function of the healing medial collateral ligament in a goat model. Knee Surg Sports Traumatol Arthrosc. 2003, 11: 155-162.

    PubMed  Google Scholar 

  • Woo SL-Y, Niyibizi C, Matyas J, Kavalkovich K, Weaver-Green C, Fox RJ: Medial collateral knee ligament healing. Combined medial collateral and anterior cruciate ligament injuries studied in rabbits. Acta Orthopaedica Scandinavica. 1997, 68: 142-148.

    CAS  PubMed  Google Scholar 

  • Yamaji T, Levine RE, Woo SL-Y, Niyibizi C, Kavalkovich KW, Weaver-Green CM: Medial collateral ligament healing one year after a concurrent medial collateral ligament and anterior cruciate ligament injury: an interdisciplinary study in rabbits. Journal of Orthopaedic Research. 1996, 14: 223-227. 10.1002/jor.1100140209.

    CAS  PubMed  Google Scholar 

  • Buss DD, Min R, Skyhar M, Galinat B, Warren RF, Wickiewicz TL: Nonoperative treatment of acute anterior cruciate ligament injuries in a selected group of patients. Am J Sports Med. 1995, 23: 160-165. 10.1177/036354659502300206.

    CAS  PubMed  Google Scholar 

  • Ciccotti MG, Lombardo SJ, Nonweiler B, Pink M: Non-operative treatment of ruptures of the anterior cruciate ligament in middle-aged patients. Results after long-term follow-up. J Bone Joint Surg Am. 1994, 76: 1315-1321.

    CAS  PubMed  Google Scholar 

  • Maffulli N: Rehabilitation of an anterior cruciate ligament. Clin Orthop Relat Res. 1997, 253-255. 10.1097/00003086-199710000-00036.

    Google Scholar 

  • Fetto JF, Marshall JL: The natural history and diagnosis of anterior cruciate ligament insufficiency. Clin Orthop Relat Res. 1980, 29-38.

    Google Scholar 

  • Hirshman HP, Daniel DM, Miyasaka K: The fate of the unoperated knee ligament injuries. Knee ligaments: structure, function, injury, and repair. Edited by: Daniel DM, Akeson WH, O'Connor JJ. 1990, New York: Raven Press, 481-503.

    Google Scholar 

  • Kannus P, Jarvinen M: Conservatively treated tears of the anterior cruciate ligament. Long-term results. J Bone Joint Surg Am. 1987, 69: 1007-1012.

    CAS  PubMed  Google Scholar 

  • Noyes FR, Mooar PA, Matthews DS, Butler DL: The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. J Bone Joint Surg Am. 1983, 65: 154-162.

    CAS  PubMed  Google Scholar 

  • Fujie H, Livesay GA, Woo SL-Y, Kashiwaguchi S, Blomstrom G: The use of a universal force-moment sensor to determine in-situ forces in ligaments: a new methodology. J Biomech Eng. 1995, 117: 1-7. 10.1115/1.2792266.

    CAS  PubMed  Google Scholar 

  • Lee TQ, Woo SL-Y: A new method for determining cross-sectional shape and area of soft tissues. J Biomech Eng. 1988, 110: 110-114.

    CAS  PubMed  Google Scholar 

  • Livesay GA, Fujie H, Kashiwaguchi S, Morrow DA, Fu FH, Woo SL-Y: Determination of the in situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng. 1995, 23: 467-474. 10.1007/BF02584446.

    CAS  PubMed  Google Scholar 

  • Rudy TW, Livesay GA, Woo SL-Y, Fu FH: A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech. 1996, 29: 1357-1360. 10.1016/0021-9290(96)00056-5.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Danto MI, Ohland KJ, Lee TQ, Newton PO: The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: a comparative study with two existing methods. J Biomech Eng. 1990, 112: 426-431. 10.1115/1.2891206.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Gomez MA, Seguchi Y, Endo CM, Akeson WH: Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. Journal of Orthopaedic Research. 1983, 1: 22-29. 10.1002/jor.1100010104.

    CAS  PubMed  Google Scholar 

  • Gomez MA, Woo SL-Y, Amiel D, Harwood F, Kitabayashi L, Matyas JR: The effects of increased tension on healing medical collateral ligaments. Am J Sports Med. 1991, 19: 347-354. 10.1177/036354659101900405.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Gelberman RH, Cobb NG, Amiel D, Lothringer K, Akeson WH: The importance of controlled passive mobilization on flexor tendon healing. A biomechanical study. Acta Orthop Scand. 1981, 52: 615-622.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Gomez MA, Akeson WH: The time and history-dependent viscoelastic properties of the canine medical collateral ligament. J Biomech Eng. 1981, 103: 293-298.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH: The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg Am. 1987, 69: 1200-1211.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Hollis JM, Adams DJ, Lyon RM, Takai S: Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med. 1991, 19: 217-225. 10.1177/036354659101900303.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Lee TQ, Gomez MA, Sato S, Field FP: Temperature dependent behavior of the canine medial collateral ligament. J Biomech Eng. 1987, 109: 68-71.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Orlando CA, Camp JF, Akeson WH: Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech. 1986, 19: 399-404. 10.1016/0021-9290(86)90016-3.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Orlando CA, Gomez MA, Frank CB, Akeson WH: Tensile properties of the medial collateral ligament as a function of age. J Orthop Res. 1986, 4: 133-141. 10.1002/jor.1100040201.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Ritter MA, Amiel D, Sanders TM, Gomez MA, Kuei SC, Garfin SR, Akeson WH: The biomechanical and biochemical properties of swine tendons–long term effects of exercise on the digital extensors. Connect Tissue Res. 1980, 7: 177-183. 10.3109/03008208009152109.

    CAS  PubMed  Google Scholar 

  • Debski RE, McMahon PJ, Thompson WO, Woo SL-Y, Warner JJ, Fu FH: A new dynamic testing apparatus to study glenohumeral joint motion. J Biomech. 1995, 28: 869-874. 10.1016/0021-9290(95)95276-B.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH: The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am. 2002, 84-A: 907-914.

    PubMed  Google Scholar 

  • Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL-Y: Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med. 2002, 30: 660-666.

    PubMed  Google Scholar 

  • Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T, Voytik SL, Kraine MR, Simmons C: The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res. 1995, 29: 977-985. 10.1002/jbm.820290809.

    CAS  PubMed  Google Scholar 

  • Hildebrand KA, Woo SL-Y, Smith DW, Allen CR, Deie M, Taylor BJ, Schmidt CC: The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med. 1998, 26: 549-554.

    CAS  PubMed  Google Scholar 

  • Liang R, Woo SL-Y, Takakura Y, Moon DK, Jia F, Abramowitch SD: Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: a functional tissue engineering study. J Orthop Res. 2006, 24: 811-819. 10.1002/jor.20080.

    PubMed  Google Scholar 

  • Scherping SC, Schmidt CC, Georgescu HI, Kwoh CK, Evans CH, Woo SL-Y: Effect of growth factors on the proliferation of ligament fibroblasts from skeletally mature rabbits. Connect Tissue Res. 1997, 36: 1-8.

    CAS  PubMed  Google Scholar 

  • Awad HA, Boivin GP, Dressler MR, Smith FN, Young RG, Butler DL: Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res. 2003, 21: 420-431. 10.1016/S0736-0266(02)00163-8.

    CAS  PubMed  Google Scholar 

  • Murray MM, Spindler KP, Abreu E, Muller JA, Nedder A, Kelly M, Frino J, Zurakowski D, Valenza M, Snyder BD, Connolly SA: Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007, 25: 81-91. 10.1002/jor.20282.

    PubMed  Google Scholar 

  • Ellis DG: Cross-sectional area measurements for tendon specimens: a comparison of several methods. J Biomech. 1969, 2: 175-186. 10.1016/0021-9290(69)90029-3.

    CAS  PubMed  Google Scholar 

  • Iaconis F, Steindler R, Marinozzi G: Measurements of cross-sectional area of collagen structures (knee ligaments) by means of an optical method. J Biomech. 1987, 20: 1003-1010. 10.1016/0021-9290(87)90330-7.

    CAS  PubMed  Google Scholar 

  • Njus GO, Njus NM: A noncontact method for determining cross sectional area of soft tissues. Trans Orthop Res Soc. 1968, 11: 126.

    Google Scholar 

  • Woo SL-Y, Akeson WH, Jemmott GF: Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. J Biomech. 1976, 9: 785-791. 10.1016/0021-9290(76)90186-X.

    CAS  PubMed  Google Scholar 

  • Moon DK, Abramowitch SD, Woo SL-Y: The development and validation of a charge-coupled device laser reflectance system to measure the complex cross-sectional shape and area of soft tissues. J Biomech. 2006, 39: 3071-3075. 10.1016/j.jbiomech.2005.10.029.

    PubMed  Google Scholar 

  • Race A, Amis AA: The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech. 1994, 27: 13-24. 10.1016/0021-9290(94)90028-0.

    CAS  PubMed  Google Scholar 

  • Lam TC, Frank CB, Shrive NG: Calibration characteristics of a video dimension analyser (VDA) system. J Biomech. 1992, 25: 1227-1231. 10.1016/0021-9290(92)90079-G.

    CAS  PubMed  Google Scholar 

  • Smutz WP, Drexler M, Berglund LJ, Growney E, An KN: Accuracy of a video strain measurement system. J Biomech. 1996, 29: 813-817. 10.1016/0021-9290(95)00131-X.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y: Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear viscoelastic properties. Biorheology. 1982, 19: 385-396.

    CAS  PubMed  Google Scholar 

  • Yin FC, Tompkins WR, Peterson KL, Intaglietta M: A video-dimension analyzer. IEEE Trans Biomed Eng. 1972, 19: 376-381. 10.1109/TBME.1972.324142.

    CAS  PubMed  Google Scholar 

  • Frank C, Woo SL-Y, Amiel D, Harwood F, Gomez M, Akeson W: Medial collateral ligament healing. A multidisciplinary assessment in rabbits. American Journal of Sports Medicine. 1983, 11: 379-389. 10.1177/036354658301100602.

    CAS  PubMed  Google Scholar 

  • Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH: Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med. 1995, 23: 24-34. 10.1177/036354659502300105.

    CAS  PubMed  Google Scholar 

  • Quapp KM, Weiss JA: Material characterization of human medial collateral ligament. J Biomech Eng. 1998, 120: 757-763. 10.1115/1.2834890.

    CAS  PubMed  Google Scholar 

  • Butler DL, Kay MD, Stouffer DC: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech. 1986, 19: 425-432. 10.1016/0021-9290(86)90019-9.

    CAS  PubMed  Google Scholar 

  • Butler DL, Guan Y, Kay MD, Cummings JF, Feder SM, Levy MS: Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech. 1992, 25: 511-518. 10.1016/0021-9290(92)90091-E.

    CAS  PubMed  Google Scholar 

  • Noyes FR, Grood ES: The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am. 1976, 58: 1074-1082.

    CAS  PubMed  Google Scholar 

  • Harner CD, Xerogeanes JW, Livesay GA, Carlin GJ, Smith BA, Kusayama T, Kashiwaguchi S, Woo SL-Y: The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation. Am J Sports Med. 1995, 23: 736-745. 10.1177/036354659502300617.

    CAS  PubMed  Google Scholar 

  • Butler DL, Grood ES, Noyes FR, Zernicke RF, Brackett K: Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech. 1984, 17: 579-596. 10.1016/0021-9290(84)90090-3.

    CAS  PubMed  Google Scholar 

  • Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SL-Y: Tensile and viscoelastic properties of human patellar tendon. J Orthop Res. 1994, 12: 796-803. 10.1002/jor.1100120607.

    CAS  PubMed  Google Scholar 

  • Kondo E, Yasuda K, Miyata K, Hara N, Kaneda K: Mechanical properties of the semitendinosus and gracilis tendons. Hokkaido Journal of Orthopaedics and Traumatology. 1998, 40: 13-15.

    Google Scholar 

  • Wren TA, Yerby SA, Beaupre GS, Carter DR: Mechanical properties of the human achilles tendon. Clin Biomech (Bristol, Avon). 2001, 16: 245-251. 10.1016/S0268-0033(00)00089-9.

    CAS  Google Scholar 

  • Bigliani LU, Pollock RG, Soslowsky LJ, Flatow EL, Pawluk RJ, Mow VC: Tensile properties of the inferior glenohumeral ligament. J Orthop Res. 1992, 10: 187-197. 10.1002/jor.1100100205.

    CAS  PubMed  Google Scholar 

  • Moore SM, McMahon PJ, Debski RE: Bi-directional mechanical properties of the axillary pouch of the glenohumeral capsule: implications for modeling and surgical repair. J Biomech Eng. 2004, 126: 284-288. 10.1115/1.1695574.

    PubMed  Google Scholar 

  • Moore SM, McMahon PJ, Azemi E, Debski RE: Bi-directional mechanical properties of the posterior region of the glenohumeral capsule. J Biomech. 2005, 38: 1365-1369. 10.1016/j.jbiomech.2004.06.005.

    PubMed  Google Scholar 

  • Frank C, McDonald D, Shrive N: Collagen fibril diameters in the rabbit medial collateral ligament scar: a longer term assessment. Connective Tissue Research. 1997, 36: 261-269.

    CAS  PubMed  Google Scholar 

  • Doehring TC, Carew EO, Vesely I: The effect of strain rate on the viscoelastic response of aortic valve tissue: a direct-fit approach. Ann Biomed Eng. 2004, 32: 223-232. 10.1023/B:ABME.0000012742.01261.b0.

    PubMed  Google Scholar 

  • Abramowitch SD, Woo SL-Y: An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J Biomech Eng. 2004, 126: 92-97. 10.1115/1.1645528.

    PubMed  Google Scholar 

  • Woo SL-Y, Abramowitch SD, Kilger R, Liang R: Biomechanics of knee ligaments: injury, healing, and repair. J Biomech. 2006, 39: 1-20. 10.1016/j.jbiomech.2004.10.025.

    PubMed  Google Scholar 

  • Woo SL-Y, Johnson GA, Smith BA: Mathematical modeling of ligaments and tendons. J Biomech Eng. 1993, 115: 468-473. 10.1115/1.2895526.

    CAS  PubMed  Google Scholar 

  • Carew EO, Talman EA, Boughner DR, Vesely I: Quasi-Linear Viscoelastic theory applied to internal shearing of porcine aortic valve leaflets. J Biomech Eng. 1999, 121: 386-392. 10.1115/1.2798335.

    CAS  PubMed  Google Scholar 

  • Kim SM, McCulloch TM, Rim K: Comparison of viscoelastic properties of the pharyngeal tissue: human and canine. Dysphagia. 1999, 14: 8-16. 10.1007/PL00009584.

    CAS  PubMed  Google Scholar 

  • Simon BR, Coats RS, Woo SL-Y: Relaxation and creep quasilinear viscoelastic models for normal articular cartilage. J Biomech Eng. 1984, 106: 159-164.

    CAS  PubMed  Google Scholar 

  • Zheng YP, Mak AF: Extraction of quasi-linear viscoelastic parameters for lower limb soft tissues from manual indentation experiment. J Biomech Eng. 1999, 121: 330-339. 10.1115/1.2798329.

    CAS  PubMed  Google Scholar 

  • Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV, Soslowsky LJ: Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann Biomed Eng. 2003, 31: 599-605. 10.1114/1.1567282.

    PubMed  Google Scholar 

  • Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ: Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res. 2003, 21: 413-419. 10.1016/S0736-0266(03)0057-3.

    PubMed  Google Scholar 

  • Johnson GA, Livesay GA, Woo SL-Y, Rajagopal KR: A single integral finite strain viscoelastic model of ligaments and tendons. J Biomech Eng. 1996, 118: 221-226. 10.1115/1.2795963.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Peterson RH, Ohland KJ, Sites TJ, Danto MI: The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study. J Orthop Res. 1990, 8: 712-721. 10.1002/jor.1100080513.

    CAS  PubMed  Google Scholar 

  • Noyes FR, DeLucas JL, Torvik PJ: Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg Am. 1974, 56: 236-253.

    CAS  PubMed  Google Scholar 

  • Danto MI, Woo SL-Y: The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J Orthop Res. 1993, 11: 58-67. 10.1002/jor.1100110108.

    CAS  PubMed  Google Scholar 

  • Peterson RH, Woo SL-Y: A new methodology to determine the mechanical properties of ligaments at high strain rates. J Biomech Eng. 1986, 108: 365-367.

    CAS  PubMed  Google Scholar 

  • Haut RC, Powlison AC: The effects of test environment and cyclic stretching on the failure properties of human patellar tendons. J Orthop Res. 1990, 8: 532-540. 10.1002/jor.1100080409.

    CAS  PubMed  Google Scholar 

  • Moon DK, Woo SL-Y, Takakura Y, Gabriel MT, Abramowitch SD: The effects of refreezing on the viscoelastic and tensile properties of ligaments. J Biomech. 2006, 39: 1153-1157. 10.1016/j.jbiomech.2005.02.012.

    PubMed  Google Scholar 

  • Viidik A, Sanquist L, Magi M: Influence of postmortem storage on tensile strength characteristics and histology of rabbit ligaments. aCta Orthop Scand [Suppl]. 1965, 79: 1-38.

    Google Scholar 

  • Woo SL-Y, Ohland KJ, Weiss JA: Aging and sex-related changes in the biomechanical properties of the rabbit medial collateral ligament. Mech Ageing Dev. 1990, 56: 129-142. 10.1016/0047-6374(90)90004-Y.

    CAS  PubMed  Google Scholar 

  • Rowe CR: Acute and recurrent anterior dislocations of the shoulder. Orthop Clin North Am. 1980, 11: 253-270.

    CAS  PubMed  Google Scholar 

  • Lee TQ, Dettling J, Sandusky MD, McMahon PJ: Age related biomechanical properties of the glenoid-anterior band of the inferior glenohumeral ligament-humerus complex. Clin Biomech (Bristol, Avon). 1999, 14: 471-476. 10.1016/S0268-0033(99)00007-8.

    CAS  Google Scholar 

  • Woo SL-Y, Gomez MA, Woo YK, Akeson WH: Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling. Biorheology. 1982, 19: 397-408.

    CAS  PubMed  Google Scholar 

  • Jozsa LG, Kannus P: Human Tendons: Anatomy, Physiology, and Pathology. 1997, Human Kinetics, Champaign, IL, 164-253.

    Google Scholar 

  • Maffulli N, Khan KM, Puddu G: Overuse tendon conditions: time to change a confusing terminology. Arthroscopy. 1998, 14: 840-843.

    CAS  PubMed  Google Scholar 

  • Curwin S, Stanish WD: Tendinitis: Its Etiology and Treatment. 1984, Lexington: Collamore Press

    Google Scholar 

  • Khan KM, Cook JL, Bonar F, Harcourt P, Astrom M: Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med. 1999, 27: 393-408. 10.2165/00007256-199927060-00004.

    CAS  PubMed  Google Scholar 

  • Clement DB, Taunton JE, Smart GW: Achilles tendinitis and peritendinitis: etiology and treatment. Am J Sports Med. 1984, 12: 179-184. 10.1177/036354658401200301.

    CAS  PubMed  Google Scholar 

  • Karlsson J, Lundin O, Lossing IW, Peterson L: Partial rupture of the patellar ligament. Results after operative treatment. Am J Sports Med. 1991, 19: 403-408. 10.1177/036354659101900415.

    CAS  PubMed  Google Scholar 

  • Maganaris CN, Narici MV, Almekinders LC, Maffulli N: Biomechanics and pathophysiology of overuse tendon injuries: ideas on insertional tendinopathy. Sports Med. 2004, 34: 1005-1017. 10.2165/00007256-200434140-00005.

    PubMed  Google Scholar 

  • Arnoczky SP, Lavagnino M, Egerbacher M: The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells?. Int J Exp Pathol. 2007, 88: 217-226. 10.1111/j.1365-2613.2007.00548.x.

    PubMed  PubMed Central  Google Scholar 

  • Wang JH, Iosifidis MI, Fu FH: Biomechanical basis for tendinopathy. Clin Orthop Relat Res. 2006, 443: 320-332. 10.1097/01.blo.0000195927.81845.46.

    PubMed  Google Scholar 

  • Archambault JM, Wiley JP, Bray RC: Exercise loading of tendons and the development of overuse injuries. A review of current literature. Sports Med. 1995, 20: 77-89. 10.2165/00007256-199520020-00003.

    CAS  PubMed  Google Scholar 

  • Kannus P, Jozsa L: Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991, 73: 1507-1525.

    CAS  PubMed  Google Scholar 

  • Khan KM, Cook JL, Kiss ZS, Visentini PJ, Fehrmann MW, Harcourt PR, Tress BW, Wark JD: Patellar tendon ultrasonography and jumper's knee in female basketball players: a longitudinal study. Clin J Sport Med. 1997, 7: 199-206.

    CAS  PubMed  Google Scholar 

  • Fung DT, Wang VM, Laudier DM, Shine JH, Basta-Pljakic J, Jepsen KJ, Schaffler MB, Flatow EL: Subrupture tendon fatigue damage. J Orthop Res. 2009, 27: 264-273. 10.1002/jor.20722.

    PubMed  PubMed Central  Google Scholar 

  • Soslowsky LJ, Carpenter JE, DeBano CM, Banerji I, Moalli MR: Development and use of an animal model for investigations on rotator cuff disease. J Shoulder Elbow Surg. 1996, 5: 383-392. 10.1016/S1058-2746(96)80070-X.

    CAS  PubMed  Google Scholar 

  • Soslowsky LJ, Thomopoulos S, Tun S, Flanagan CL, Keefer CC, Mastaw J, Carpenter JE: Neer Award 1999. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J Shoulder Elbow Surg. 2000, 9: 79-84. 10.1016/S1058-2746(00)90033-8.

    CAS  PubMed  Google Scholar 

  • Viidik A: Simultaneous mechanical and light microscopic studies of collagen fibers. Z Anat Entwicklungsgesch. 1972, 136: 204-212. 10.1007/BF00519178.

    CAS  PubMed  Google Scholar 

  • Viidik A: Mechanical Properties of parallel-fibered collagenous tissues. Biology of Collagen. Edited by: Viidik A, Vuust J. 1980, London: Academic Press, 237-255.

    Google Scholar 

  • Kannus P: Etiology and pathophysiology of chronic tendon disorders in sports. Scand J Med Sci Sports. 1997, 7: 78-85.

    CAS  PubMed  Google Scholar 

  • Ker RF: The implications of the adaptable fatigue quality of tendons for their construction, repair and function. Comp Biochem Physiol A Mol Integr Physiol. 2002, 133: 987-1000. 10.1016/S1095-6433(02)00171-X.

    PubMed  Google Scholar 

  • Leadbetter WB: Cell-matrix response in tendon injury. Clin Sports Med. 1992, 11: 533-578.

    CAS  PubMed  Google Scholar 

  • Arnoczky SP, Lavagnino M, Whallon JH, Hoonjan A: In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy. J Orthop Res. 2002, 20: 29-35. 10.1016/S0736-0266(01)00080-8.

    PubMed  Google Scholar 

  • Almekinders LC, Banes AJ, Ballenger CA: Effects of repetitive motion on human fibroblasts. Med Sci Sports Exerc. 1993, 25: 603-607.

    CAS  PubMed  Google Scholar 

  • van Griensven M, Zeichen J, Skutek M, Barkhausen T, Krettek C, Bosch U: Cyclic mechanical strain induces NO production in human patellar tendon fibroblasts–a possible role for remodelling and pathological transformation. Exp Toxicol Pathol. 2003, 54: 335-338. 10.1078/0940-2993-00268.

    CAS  PubMed  Google Scholar 

  • Potter HG, Hannafin JA, Morwessel RM, DiCarlo EF, O'Brien SJ, Altchek DW: Lateral epicondylitis: correlation of MR imaging, surgical, and histopathologic findings. Radiology. 1995, 196: 43-46.

    CAS  PubMed  Google Scholar 

  • Astrom M, Rausing A: Chronic Achilles tendinopathy. A survey of surgical and histopathologic findings. Clin Orthop Relat Res. 1995, 151-164.

    Google Scholar 

  • Khan KM, Maffulli N, Coleman BD, Cook JL, Taunton JE: Patellar tendinopathy: some aspects of basic science and clinical management. Br J Sports Med. 1998, 32: 346-355. 10.1136/bjsm.32.4.346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Maffulli N: Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am. 2005, 87: 187-202. 10.2106/JBJS.D.01850.

    PubMed  Google Scholar 

  • Riley GP, Curry V, DeGroot J, van El B, Verzijl N, Hazleman BL, Bank RA: Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology. Matrix Biol. 2002, 21: 185-195. 10.1016/S0945-053X(01)00196-2.

    CAS  PubMed  Google Scholar 

  • Banes AJ, Tsuzaki M, Hu P, Brigman B, Brown T, Almekinders L, Lawrence WT, Fischer T: PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J Biomech. 1995, 28: 1505-1513. 10.1016/0021-9290(95)00098-4.

    CAS  PubMed  Google Scholar 

  • Banes AJ, Horesovsky G, Larson C, Tsuzaki M, Judex S, Archambault J, Zernicke R, Herzog W, Kelley S, Miller L: Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthritis Cartilage. 1999, 7: 141-153. 10.1053/joca.1998.0169.

    CAS  PubMed  Google Scholar 

  • Skutek M, van Griensven M, Zeichen J, Brauer N, Bosch U: Cyclic mechanical stretching enhances secretion of Interleukin 6 in human tendon fibroblasts. Knee Surg Sports Traumatol Arthrosc. 2001, 9: 322-326. 10.1007/s001670100217.

    CAS  PubMed  Google Scholar 

  • Scott A, Khan KM, Heer J, Cook JL, Lian O, Duronio V: High strain mechanical loading rapidly induces tendon apoptosis: an ex vivo rat tibialis anterior model. Br J Sports Med. 2005, 39: e25-10.1136/bjsm.2004.015164.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Archambault J, Tsuzaki M, Herzog W, Banes AJ: Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. J Orthop Res. 2002, 20: 36-39. 10.1016/S0736-0266(01)00075-4.

    CAS  PubMed  Google Scholar 

  • Tsuzaki M, Bynum D, Almekinders L, Yang X, Faber J, Banes AJ: ATP modulates load-inducible IL-1beta, COX 2, and MMP-3 gene expression in human tendon cells. J Cell Biochem. 2003, 89: 556-562. 10.1002/jcb.10534.

    CAS  PubMed  Google Scholar 

  • Wang JH, Jia F, Yang G, Yang S, Campbell BH, Stone D, Woo SL-Y: Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect Tissue Res. 2003, 44: 128-133. 10.1080/713713684.

    CAS  PubMed  Google Scholar 

  • Bey MJ, Ramsey ML, Soslowsky LJ: Intratendinous strain fields of the supraspinatus tendon: effect of a surgically created articular-surface rotator cuff tear. J Shoulder Elbow Surg. 2002, 11: 562-569. 10.1067/mse.2002.126767.

    PubMed  Google Scholar 

  • Almekinders LC, Vellema JH, Weinhold PS: Strain patterns in the patellar tendon and the implications for patellar tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2002, 10: 2-5. 10.1007/s001670100224.

    PubMed  Google Scholar 

  • Arnoczky SP, Tian T, Lavagnino M, Gardner K: Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J Orthop Res. 2004, 22: 328-333. 10.1016/S0736-0266(03)00185-2.

    CAS  PubMed  Google Scholar 

  • Lavagnino M, Arnoczky SP: In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. J Orthop Res. 2005, 23: 1211-1218. 10.1016/j.orthres.2005.04.001.

    CAS  PubMed  Google Scholar 

  • Lavagnino M, Arnoczky SP, Egerbacher M, Gardner KL, Burns ME: Isolated fibrillar damage in tendons stimulates local collagenase mRNA expression and protein synthesis. J Biomech. 2006, 39: 2355-2362. 10.1016/j.jbiomech.2005.08.008.

    PubMed  Google Scholar 

  • Lavagnino M, Arnoczky SP, Frank K, Tian T: Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons. J Biomech. 2005, 38: 69-75.

    PubMed  Google Scholar 

  • Lavagnino M, Arnoczky SP, Tian T, Vaupel Z: Effect of amplitude and frequency of cyclic tensile strain on the inhibition of MMP-1 mRNA expression in tendon cells: an in vitro study. Connect Tissue Res. 2003, 44: 181-187. 10.1080/713713679.

    CAS  PubMed  Google Scholar 

  • Grinnell F, Zhu M, Carlson MA, Abrams JM: Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res. 1999, 248: 608-619. 10.1006/excr.1999.4440.

    CAS  PubMed  Google Scholar 

  • Lyman J, Weinhold PS, Almekinders LC: Strain behavior of the distal achilles tendon: implications for insertional achilles tendinopathy. Am J Sports Med. 2004, 32: 457-461. 10.1177/0095399703258621.

    PubMed  Google Scholar 

  • Benjamin M, Ralphs JR: Fibrocartilage in tendons and ligaments–an adaptation to compressive load. J Anat. 1998, 193 (Pt 4): 481-494. 10.1046/j.1469-7580.1998.19340481.x.

    PubMed  PubMed Central  Google Scholar 

  • Jozsa L, Reffy A, Kannus P, Demel S, Elek E: Pathological alterations in human tendons. Arch Orthop Trauma Surg. 1990, 110: 15-21. 10.1007/BF00431359.

    CAS  PubMed  Google Scholar 

  • Vogel KG, Ordog A, Pogany G, Olah J: Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments. J Orthop Res. 1993, 11: 68-77. 10.1002/jor.1100110109.

    CAS  PubMed  Google Scholar 

  • Lavagnino M, Arnoczky SP, Kepich E, Caballero O, Haut RC: A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading. Biomech Model Mechanobiol. 2008, 7: 405-416. 10.1007/s10237-007-0104-z.

    PubMed  Google Scholar 

  • Stanish WD, Rubinovich RM, Curwin S: Eccentric exercise in chronic tendinitis. Clin Orthop Relat Res. 1986, 65-68.

    Google Scholar 

  • Alfredson H, Lorentzon R: Intratendinous glutamate levels and eccentric training in chronic Achilles tendinosis: a prospective study using microdialysis technique. Knee Surg Sports Traumatol Arthrosc. 2003, 11: 196-199. 10.1007/s00167-003-0391-6.

    PubMed  Google Scholar 

  • Alfredson H, Pietila T, Jonsson P, Lorentzon R: Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med. 1998, 26: 360-366.

    CAS  PubMed  Google Scholar 

  • Mafi N, Lorentzon R, Alfredson H: Superior short-term results with eccentric calf muscle training compared to concentric training in a randomized prospective multicenter study on patients with chronic Achilles tendinosis. Knee Surg Sports Traumatol Arthrosc. 2001, 9: 42-47. 10.1007/s001670000148.

    CAS  PubMed  Google Scholar 

  • Magnusson SP, Kjaer M: Region-specific differences in Achilles tendon cross-sectional area in runners and non-runners. Eur J Appl Physiol. 2003, 90: 549-553. 10.1007/s00421-003-0865-8.

    PubMed  Google Scholar 

  • Crameri RM, Langberg H, Teisner B, Magnusson P, Schroder HD, Olesen JL, Jensen CH, Koskinen S, Suetta C, Kjaer M: Enhanced procollagen processing in skeletal muscle after a single bout of eccentric loading in humans. Matrix Biol. 2004, 23: 259-264. 10.1016/j.matbio.2004.05.009.

    CAS  PubMed  Google Scholar 

  • Windt van der DA, Heijden van der GJ, Berg van den SG, ter Riet G, de Winter AF, Bouter LM: Ultrasound therapy for musculoskeletal disorders: a systematic review. Pain. 1999, 81: 257-271. 10.1016/S0304-3959(99)00016-0.

    PubMed  Google Scholar 

  • Rompe JD, Hopf C, Nafe B, Burger R: Low-energy extracorporeal shock wave therapy for painful heel: a prospective controlled single-blind study. Arch Orthop Trauma Surg. 1996, 115: 75-79. 10.1007/BF00573445.

    CAS  PubMed  Google Scholar 

  • Ohberg L, Alfredson H: Sclerosing therapy in chronic Achilles tendon insertional pain-results of a pilot study. Knee Surg Sports Traumatol Arthrosc. 2003, 11: 339-343. 10.1007/s00167-003-0402-7.

    PubMed  Google Scholar 

  • Almekinders LC, Deol G: The effects of aging, antiinflammatory drugs, and ultrasound on the in vitro response of tendon tissue. Am J Sports Med. 1999, 27: 417-421.

    CAS  PubMed  Google Scholar 

  • DaCruz DJ, Geeson M, Allen MJ, Phair I: Achilles paratendonitis: an evaluation of steroid injection. Br J Sports Med. 1988, 22: 64-65. 10.1136/bjsm.22.2.64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price R, Sinclair H, Heinrich I, Gibson T: Local injection treatment of tennis elbow–hydrocortisone, triamcinolone and lignocaine compared. Br J Rheumatol. 1991, 30: 39-44. 10.1093/rheumatology/30.1.39.

    CAS  PubMed  Google Scholar 

  • Astrom M, Westlin N: No effect of piroxicam on achilles tendinopathy. A randomized study of 70 patients. Acta Orthop Scand. 1992, 63: 631-634.

    CAS  PubMed  Google Scholar 

  • Paavola M, Kannus P, Jarvinen TA, Jarvinen TL, Jozsa L, Jarvinen M: Treatment of tendon disorders. Is there a role for corticosteroid injection?. Foot Ankle Clin. 2002, 7: 501-513. 10.1016/S1083-7515(02)00056-6.

    PubMed  Google Scholar 

  • Maffulli N, Renstrom P, Leadbetter WB: Tendon Injuries: Basic Science and Clinical Medicine. 2005, London: Springer

    Google Scholar 

  • Tallon C, Maffulli N, Ewen SW: Ruptured Achilles tendons are significantly more degenerated than tendinopathic tendons. Med Sci Sports Exerc. 2001, 33: 1983-1990. 10.1097/00005768-200112000-00002.

    CAS  PubMed  Google Scholar 

  • Williams JG: Achilles tendon lesions in sport. Sports Med. 1986, 3: 114-135. 10.2165/00007256-198603020-00003.

    CAS  PubMed  Google Scholar 

  • Murray MM, Martin SD, Martin TL, Spector M: Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am. 2000, 82-A: 1387-1397.

    CAS  PubMed  Google Scholar 

  • Wiig ME, Amiel D, VandeBerg J, Kitabayashi L, Harwood FL, Arfors KE: The early effect of high molecular weight hyaluronan (hyaluronic acid) on anterior cruciate ligament healing: an experimental study in rabbits. J Orthop Res. 1990, 8: 425-434. 10.1002/jor.1100080314.

    CAS  PubMed  Google Scholar 

  • Andersson C, Odensten M, Good L, Gillquist J: Surgical or non-surgical treatment of acute rupture of the anterior cruciate ligament. A randomized study with long-term follow-up. J Bone Joint Surg Am. 1989, 71: 965-974.

    CAS  PubMed  Google Scholar 

  • Nagineni CN, Amiel D, Green MH, Berchuck M, Akeson WH: Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J Orthop Res. 1992, 10: 465-475. 10.1002/jor.1100100402.

    CAS  PubMed  Google Scholar 

  • Wiig ME, Amiel D, Ivarsson M, Nagineni CN, Wallace CD, Arfors KE: Type I procollagen gene expression in normal and early healing of the medial collateral and anterior cruciate ligaments in rabbits: an in situ hybridization study. J Orthop Res. 1991, 9: 374-382. 10.1002/jor.1100090309.

    CAS  PubMed  Google Scholar 

  • Arnoczky SP: Blood supply to the anterior cruciate ligament and supporting structures. Orthop Clin North Am. 1985, 16: 15-28.

    CAS  PubMed  Google Scholar 

  • Bray RC, Butterwick DJ, Doschak MR, Tyberg JV: Coloured microsphere assessment of blood flow to knee ligaments in adult rabbits: effects of injury. Journal of Orthopaedic Research. 1996, 14: 618-625. 10.1002/jor.1100140417.

    CAS  PubMed  Google Scholar 

  • Bray RC, Rangayyan RM, Frank CB: Normal and healing ligament vascularity: a quantitative histological assessment in the adult rabbit medial collateral ligament. Journal of Anatomy. 1996, 188: 87-95.

    PubMed  PubMed Central  Google Scholar 

  • Murray MMaS KP: Anterior Cruciate Ligament Healing and Repair. Sports Med Arthrosc Rev. 2005, 13: 151-155. 10.1097/01.jsa.0000173243.92319.da.

    Google Scholar 

  • Bray RC, Fisher AW, Frank CB: Fine vascular anatomy of adult rabbit knee ligaments. J Anat. 1990, 172: 69-79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frank C, Amiel D, Akeson WH: Healing of the medial collateral ligament of the knee. A morphological and biochemical assessment in rabbits. Acta Orthop Scand. 1983, 54: 917-923.

    CAS  PubMed  Google Scholar 

  • Indelicato P: Isolated medial collateral ligament injuries in the knee. J Am Acad Orthop Surg. 1995, 3: 9-14.

    PubMed  Google Scholar 

  • Lee J, Harwood FL, Akeson WH, Amiel D: Growth factor expression in healing rabbit medial collateral and anterior cruciate ligaments. Iowa Orthop J. 1998, 18: 19-25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Healey RM, Sah RL, Clark JJ, Tu BP, Goomer RS, Akeson WH, Moriya H, Amiel D: Novel method for the quantitative assessment of cell migration: a study on the motility of rabbit anterior cruciate (ACL) and medial collateral ligament (MCL) cells. Tissue Eng. 2000, 6: 29-38. 10.1089/107632700320865.

    CAS  PubMed  Google Scholar 

  • Barrack RL, Bruckner JD, Kneisl J, Inman WS, Alexander AH: The outcome of nonoperatively treated complete tears of the anterior cruciate ligament in active young adults. Clin Orthop Relat Res. 1990, 192-199.

    Google Scholar 

  • Fink C, Hoser C, Benedetto KP, Hackl W, Gabl M: [Long-term outcome of conservative or surgical therapy of anterior cruciate ligament rupture]. Unfallchirurg. 1996, 99: 964-969. 10.1007/s001130050081.

    CAS  PubMed  Google Scholar 

  • Lobenhoffer P, Tscherne H: [Rupture of the anterior cruciate ligament. Current status of treatment]. Unfallchirurg. 1993, 96: 150-168.

    CAS  PubMed  Google Scholar 

  • Scavenius M, Bak K, Hansen S, Norring K, Jensen KH, Jorgensen U: Isolated total ruptures of the anterior cruciate ligament–a clinical study with long-term follow-up of 7 years. Scand J Med Sci Sports. 1999, 9: 114-119.

    CAS  PubMed  Google Scholar 

  • Wittenberg RH, Oxfort HU, Plafki C: A comparison of conservative and delayed surgical treatment of anterior cruciate ligament ruptures. A matched pair analysis. Int Orthop. 1998, 22: 145-148. 10.1007/s002640050228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fink C, Hoser C, Benedetto KP: [Sports capacity after rupture of the anterior cruciate ligament–surgical versus non-surgical therapy]. Aktuelle Traumatol. 1993, 23: 371-375.

    CAS  PubMed  Google Scholar 

  • Streich NA, Friedrich K, Gotterbarm T, Schmitt H: Reconstruction of the ACL with a semitendinosus tendon graft: a prospective randomized single blinded comparison of double-bundle versus single-bundle technique in male athletes. Knee Surg Sports Traumatol Arthrosc. 2008, 16: 232-238. 10.1007/s00167-007-0480-z.

    PubMed  Google Scholar 

  • Aglietti P, Buzzi R, D'Andria S, Zaccherotti G: Arthroscopic anterior cruciate ligament reconstruction with patellar tendon. Arthroscopy. 1992, 8: 510-516.

    CAS  PubMed  Google Scholar 

  • Arnoczky SP, Tarvin GB, Marshall JL: Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am. 1982, 64: 217-224.

    CAS  PubMed  Google Scholar 

  • Cooper DE, Deng XH, Burstein AL, Warren RF: The strength of the central third patellar tendon graft. A biomechanical study. Am J Sports Med. 1993, 21: 818-823. 10.1177/036354659302100610.

    CAS  PubMed  Google Scholar 

  • Jones KG: Reconstruction of the anterior cruciate ligament using the central one-third of the patellar ligament. J Bone Joint Surg Am. 1970, 52: 838-839.

    CAS  PubMed  Google Scholar 

  • Kurosaka M, Yoshiya S, Andrish JT: A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med. 1987, 15: 225-229. 10.1177/036354658701500306.

    CAS  PubMed  Google Scholar 

  • Salmon LJ, Russell VJ, Refshauge K, Kader D, Connolly C, Linklater J, Pinczewski LA: Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med. 2006, 34: 721-732. 10.1177/0363546505282626.

    PubMed  Google Scholar 

  • Shelbourne KD, Nitz P: Accelerated rehabilitation after anterior cruciate ligament reconstruction. American Journal of Sports Medicine. 1990, 18: 292-299. 10.1177/036354659001800313.

    CAS  PubMed  Google Scholar 

  • Aglietti P, Buzzi R, D'Andria S, Zaccherotti G: Patellofemoral problems after intraarticular anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 1993, 195-204.

    Google Scholar 

  • Jackson DW, Schaefer RK: Cyclops syndrome: Loss of extension following intra-articular anterior cruciate ligament reconstruction. Arthroscopy. 1990, 6: 171-178.

    CAS  PubMed  Google Scholar 

  • Maletius W, Messner K: Eighteen- to twenty-four-year follow-up after complete rupture of the anterior cruciate ligament. American Journal of Sports Medicine. 1999, 27: 711-717.

    CAS  PubMed  Google Scholar 

  • Salmon LJ, Russell VJ, Refshauge K, Kader D, Connolly C, Linklater J, Pinczewski LA: Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: Minimum 13-year review. American Journal of Sports Medicine. 2006, 34: 721-732.

    PubMed  Google Scholar 

  • Roe J, Pinczewski LA, Russell VJ, Salmon LJ, Kawamata T, Chew M: A 7-year follow-up of patellar tendon and hamstring tendon grafts for arthroscopic anterior cruciate ligament reconstruction: Differences and similarities. American Journal of Sports Medicine. 2005, 33: 1337-1345. 10.1177/0363546504274145.

    PubMed  Google Scholar 

  • Hertel P, Behrend H, Cierpinski T, Musahl V, Widjaja G: ACL reconstruction using bone-patellar tendon-bone press-fit fixation: 10-Year clinical results. Knee Surgery, Sports Traumatology, Arthroscopy. 2005, 13: 248-255. 10.1007/s00167-004-0606-5.

    CAS  PubMed  Google Scholar 

  • Drogset JO, Grontvedt T, Robak OR, Molster A, Viset AT, Engebretsen L: A sixteen-year follow-up of three operative techniques for the treatment of acute ruptures of the anterior cruciate ligament. J Bone Joint Surg Am. 2006, 88: 944-952. 10.2106/JBJS.D.02876.

    PubMed  Google Scholar 

  • Jomha NM, Pinczewski LA, Clingeleffer A, Otto DD: Arthroscopic reconstruction of the anterior cruciate ligament with patellar-tendon autograft and interference screw fixation. The results at seven years. Journal of Bone and Joint Surgery – Series B. 1999, 81: 775-779. 10.1302/0301-620X.81B5.8644.

    CAS  Google Scholar 

  • Sommerlath K, Lysholm J, Gillquist J: The long-term course after treatment of acute anterior cruciate ligament ruptures. A 9 to 16 year followup. American Journal of Sports Medicine. 1991, 19: 156-162. 10.1177/036354659101900211.

    CAS  PubMed  Google Scholar 

  • Von Porat A, Roos EM, Roos H: High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004 Mar;63(3):269-73. 2004, 63 (3): 269-273. 10.1136/ard.2003.008136.

    CAS  Google Scholar 

  • Ait Si Selmi T, Fithian D, Neyret P: The evolution of osteoarthritis in 103 patients with ACL reconstruction at 17 years follow-up. Knee. 2006, 13: 353-358. 10.1016/j.knee.2006.02.014.

    CAS  PubMed  Google Scholar 

  • Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP, Phelan D, Daniel DM: Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. American Journal of Sports Medicine. 2005, 33: 335-346. 10.1177/0363546504269590.

    PubMed  Google Scholar 

  • Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR: Fate of the ACL-injured patient. A prospective outcome study. American Journal of Sports Medicine. 1994, 22: 632-644. 10.1177/036354659402200511.

    CAS  PubMed  Google Scholar 

  • Ruiz AL, Kelly M, Nutton RW: Arthroscopic ACL reconstruction: A 5–9 year follow-up. Knee. 2002, 9: 197-200. 10.1016/S0968-0160(02)00019-4.

    CAS  PubMed  Google Scholar 

  • Lohmander LS, Ostenberg A, Englund M, Roos H: High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004, 50: 3145-3152. 10.1002/art.20589.

    CAS  PubMed  Google Scholar 

  • Allen CR, Livesay GA, Wong EK, Woo SL-Y: Injury and reconstruction of the anterior cruciate ligament and knee osteoarthritis. Osteoarthritis Cartilage. 1999, 7: 110-121. 10.1053/joca.1998.0166.

    CAS  PubMed  Google Scholar 

  • Fujie H, Mabuchi K, Woo SL-Y, Livesay GA, Arai S, Tsukamoto Y: The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng. 1993, 115: 211-217. 10.1115/1.2895477.

    CAS  PubMed  Google Scholar 

  • Livesay GA, Rudy TW, Woo SL-Y, Runco TJ, Sakane M, Li G, Fu FH: Evaluation of the effect of joint constraints on the in situ force distribution in the anterior cruciate ligament. J Orthop Res. 1997, 15: 278-284. 10.1002/jor.1100150218.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Debski RE, Wong EK, Yagi M, Tarinelli D: Use of robotic technology for diathrodial joint research. J Sci Med Sport. 1999, 2: 283-297. 10.1016/S1440-2440(99)80002-4.

    CAS  PubMed  Google Scholar 

  • Nielsen S, Helmig P: Instability of knees with ligament lesions. Cadaver studies of the anterior cruciate ligament. Acta Orthop Scand. 1985, 56: 426-429.

    CAS  PubMed  Google Scholar 

  • Sullivan D, Levy IM, Sheskier S, Torzilli PA, Warren RF: Medical restraints to anterior-posterior motion of the knee. J Bone Joint Surg Am. 1984, 66: 930-936.

    CAS  PubMed  Google Scholar 

  • Torzilli PA, Greenberg RL, Insall J: An in vivo biomechanical evaluation of anterior-posterior motion of the knee. Roentgenographic measurement technique, stress machine, and stable population. J Bone Joint Surg Am. 1981, 63: 960-968.

    CAS  PubMed  Google Scholar 

  • Fujie H, Sekito T, Orita A: A novel robotic system for joint biomechanical tests: application to the human knee joint. J Biomech Eng. 2004, 126: 54-61. 10.1115/1.1644567.

    PubMed  Google Scholar 

  • Gill TJ, DeFrate LE, Wang C, Carey CT, Zayontz S, Zarins B, Li G: The biomechanical effect of posterior cruciate ligament reconstruction on knee joint function. Kinematic response to simulated muscle loads. Am J Sports Med. 2003, 31: 530-536.

    PubMed  Google Scholar 

  • Li G, Gil J, Kanamori A, Woo SL-Y: A validated three-dimensional computational model of a human knee joint. J Biomech Eng. 1999, 121: 657-662. 10.1115/1.2800871.

    CAS  PubMed  Google Scholar 

  • Song Y, Debski RE, Musahl V, Thomas M, Woo SL-Y: A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech. 2004, 37: 383-390. 10.1016/S0021-9290(03)00261-6.

    PubMed  Google Scholar 

  • Sherman MF, Lieber L, Bonamo JR, Podesta L, Reiter I: The long-term followup of primary anterior cruciate ligament repair. Defining a rationale for augmentation. Am J Sports Med. 1991, 19: 243-255. 10.1177/036354659101900307.

    CAS  PubMed  Google Scholar 

  • Kanamori A, Woo SL-Y, Ma CB, Zeminski J, Rudy TW, Li G, Livesay GA: The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy. 2000, 16: 633-639.

    CAS  PubMed  Google Scholar 

  • Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL-Y: Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o'clock and 10 o'clock femoral tunnel placement. 2002 Richard O'Connor Award paper. Arthroscopy. 2003, 19: 297-304.

    PubMed  Google Scholar 

  • Yamamoto Y, Hsu WH, Woo SL-Y, Van Scyoc AH, Takakura Y, Debski RE: Knee stability and graft function after anterior cruciate ligament reconstruction: a comparison of a lateral and an anatomical femoral tunnel placement. Am J Sports Med. 2004, 32: 1825-1832. 10.1177/0363546504263947.

    PubMed  Google Scholar 

  • Reider B, Sathy MR, Talkington J, Blyznak N, Kollias S: Treatment of isolated medial collateral ligament injuries in athletes with early functional rehabilitation. A five-year follow-up study. Am J Sports Med. 1994, 22: 470-477. 10.1177/036354659402200406.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Inoue M, McGurk-Burleson E, Gomez MA: Treatment of the medial collateral ligament injury. II: Structure and function of canine knees in response to differing treatment regimens. American Journal of Sports Medicine. 1987, 15: 22-29. 10.1177/036354658701500104.

    CAS  PubMed  Google Scholar 

  • Inoue M, Woo SL-Y, Gomez MA, Amiel D, Ohland KJ, Kitabayashi LR: Effects of surgical treatment and immobilization on the healing of the medial collateral ligament: a long-term multidisciplinary study. Connect Tissue Res. 1990, 25: 13-26. 10.3109/03008209009009809.

    CAS  PubMed  Google Scholar 

  • Loitz-Ramage BJ, Frank CB, Shrive NG: Injury size affects long-term strength of the rabbit medial collateral ligament. Clinical Orthopaedics & Related Research. 1997, 272-280.

    Google Scholar 

  • Ohno K, Pomaybo AS, Schmidt CC, Levine RE, Ohland KJ, Woo SL-Y: Healing of the medial collateral ligament after a combined medial collateral and anterior cruciate ligament injury and reconstruction of the anterior cruciate ligament: comparison of repair and nonrepair of medial collateral ligament tears in rabbits. J Orthop Res. 1995, 13: 442-449. 10.1002/jor.1100130319.

    CAS  PubMed  Google Scholar 

  • Frolke JP, Oskam J, Vierhout PA: Primary reconstruction of the medial collateral ligament in combined injury of the medial collateral and anterior cruciate ligaments. Short-term results. Knee Surg Sports Traumatol Arthrosc. 1998, 6: 103-106. 10.1007/s001670050081.

    CAS  PubMed  Google Scholar 

  • Hillard-Sembell D, Daniel DM, Stone ML, Dobson BE, Fithian DC: Combined injuries of the anterior cruciate and medial collateral ligaments of the knee. Effect of treatment on stability and function of the joint. J Bone Joint Surg Am. 1996, 78: 169-176.

    CAS  PubMed  Google Scholar 

  • Inoue M, McGurk-Burleson E, Hollis JM, Woo SL-Y: Treatment of the medial collateral ligament injury. I: The importance of anterior cruciate ligament on the varus-valgus knee laxity. Am J Sports Med. 1987, 15: 15-21. 10.1177/036354658701500103.

    CAS  PubMed  Google Scholar 

  • Abramowitch SD, Yagi M, Tsuda E, Woo SL-Y: The healing medial collateral ligament following a combined anterior cruciate and medial collateral ligament injury–a biomechanical study in a goat model. J Orthop Res. 2003, 21: 1124-1130. 10.1016/S0736-0266(03)00080-9.

    PubMed  Google Scholar 

  • Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG: Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res. 1998, 16: 414-420. 10.1002/jor.1100160404.

    CAS  PubMed  Google Scholar 

  • Spindler KP, Murray MM, Detwiler KB, Tarter JT, Dawson JM, Nanney LB, Davidson JM: The biomechanical response to doses of TGF-beta 2 in the healing rabbit medial collateral ligament. J Orthop Res. 2003, 21: 245-249. 10.1016/S0736-0266(02)00145-6.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Takakura Y, Liang R: Treatment with bioscaffold enhances the collagen composition and fibril morphology of the healing medial collateral ligament in rabbits. Tissue Eng. 2006, 12: 159-166. 10.1089/ten.2006.12.159.

    CAS  PubMed  Google Scholar 

  • Liang R, Woo SL-Y, Takakura Y, Moon DK, Jia F, Abramowitch SD: Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: a functional tissue engineering study. J Orthop Res. 2006, 24: 811-819. 10.1002/jor.20080.

    PubMed  Google Scholar 

  • Jacobson M, Fufa D, Abreu EL, Kevy S, Murray MM: Platelets, but not erythrocytes, significantly affect cytokine release and scaffold contraction in a provisional scaffold model. Wound Repair Regen. 2008, 16: 370-378. 10.1111/j.1524-475X.2008.00376.x.

    PubMed  PubMed Central  Google Scholar 

  • Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K: Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc. 2006, 14: 1307-1314. 10.1007/s00167-006-0124-8.

    PubMed  Google Scholar 

  • Karaoglu S, Fisher MB, Woo SL-Y, Fu YC, Liang R, Abramowitch SD: Use of a Bioscaffold to Improve Healing of a Patellar Tendon Defect After Graft Harvest for ACL Reconstruction: A Study in Rabbits. J Orthop Res. 2008, 26: 255-263. 10.1002/jor.20471.

    PubMed  Google Scholar 

  • Woo SL-Y, Takakura Y, Liang R, Jia F, Moon DK: Treatment with bioscaffold enhances the the fibril morphology and the collagen composition of healing medial collateral ligament in rabbits. Tissue Eng. 2006, 12: 159-166. 10.1089/ten.2006.12.159.

    CAS  PubMed  Google Scholar 

  • Liang R, Woo SL-Y, Nguyen TD, Liu PC, Almarza A: Effects of a bioscaffold on collagen fibrillogenesis in healing medial collateral ligament in rabbits. J Orthop Res. 2008, 26: 1098-1104. 10.1002/jor.20616.

    CAS  PubMed  Google Scholar 

  • Murray MM: Current status and potential of primary ACL repair. Clin Sports Med. 2009, 28: 51-61. 10.1016/j.csm.2008.08.005.

    PubMed  PubMed Central  Google Scholar 

  • Murray MM, Fleming BC, Abreu E, Magarian E, Mastrangelo A, Palmer M, Spindler KP: Collagen-Platelet Rich Plasma Hydrogel Enhances Primary Repair of the Porcine Anterior Cruciate Ligament. International Symposium on Ligaments and Tendons VIII; March 1; Stanford, CA. 2008, 38.

    Google Scholar 

  • Nguyen TD, Liang R, Woo SL-Y, Burton SD, Wu C, Almarza A, Sacks MS, Abramowitch S: Effects of Cell Seeding and Cyclic Stretch on the Fiber Remodeling in an Extracellular Matrix-Derived Bioscaffold. Tissue Eng Part A. 2009, 15: 957-963. 10.1089/ten.tea.2007.0384.

    CAS  PubMed  Google Scholar 

  • Giphart JE, Shelburne KB, Anstett K, Brunkhorst JP, Pault JD, Woo SL-Y, Steadman JR, Torry MR: Measurement of 3D In Vivo Knee Motion Using Biplane Fluoroscopy: Investigation of Non-contact ACL Injuries. XVIth International Conference on Mechanics in Medicine and Biology; July 23–25; Pittsburgh, PA. 2008

    Google Scholar 

  • What is the property that allows a tissue to return to normal following deformation?

    Elastin is a protein in connective tissue that allows tissues in the body to resume their shape after stretching or contracting.

    Which of the following refers to the relative ability of a tissue to resist a particular load?

    Stiffness = the relative ability of a tissue to resist a particular load. Stress = the internal resistance of the tissues to an external load. Strain = deformation of tissue due to a load.

    What type of force is caused by twisting in opposite direction from the opposite ends of a structure?

    Two other important forces acting upon structures are shear and torsion: shear is a force that causes parts of a material to slide past one another in opposite directions, and torsion is a twisting force.

    Which of the following is the term used for an injury to the Musculotendinous unit?

    Abstract. A strain, by definition, is a stretching or tearing of a musculotendinous unit. The degree of disability associated with this injury is dictated by the location and severity of the injury and the specific needs of the patient. A strain can be arbitrarily classified as first, second, or third degree.