According to the parallel distributed processing approach to semantic memory,

Published online by Cambridge University Press:  05 November 2012

Ken McRaeAffiliation:

University of Western Ontario

Marc JoanisseAffiliation:

University of Western Ontario

  • Chapter

Summary

A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.

According to the parallel distributed processing approach to semantic memory,

Type

Chapter

Information

Publisher: Cambridge University Press

Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

The Cognitive Neuroscience of Semantic Memory

  • Psychology, Biology

  • 2012

Evidence that conceptual knowledge about concrete objects is acquired through experience with them, distributed across brain regions that are involved in perceiving or acting upon them, and impaired via damage to these brain regions is reviewed.

Semantic memory and language processing: a primer.

  • Sharon M. AntonucciJamie Reilly
  • Psychology

    Seminars in speech and language

  • 2008

It is argued that treatment specificity demands a comprehensive understanding of the structure of semantic memory and the nature of its compromise, and several neuroanatomically informed theories of semantic organization with respect to the effects of semantic impairment on language processing in aphasia and neurodegenerative disease are reviewed.

SHOWING 1-10 OF 152 REFERENCES

Semantic Cognition: A Parallel Distributed Processing Approach

  • T. RogersJames L. McClelland
  • Psychology

  • 2004

The authors propose that performance in semantic tasks arises through the propagation of graded signals in a system of interconnected processing units, and show how a simple computational model proposed by Rumelhart exhibits a progressive differentiation of conceptual knowledge, paralleling aspects of cognitive development seen in the work of Frank Keil and Jean Mandler.

Finding Structure in Time

  • J. Elman
  • Psychology

    Cogn. Sci.

  • 1990

A proposal along these lines first described by Jordan (1986) which involves the use of recurrent links in order to provide networks with a dynamic memory and suggests a method for representing lexical categories and the type/token distinction is developed.

References

  1. Quillian, M. R. in Semantic Information Processing (ed. Minsky, M.) 227–270 (MIT Press, Cambridge, Massachusetts, 1968).

    Google Scholar 

  2. Warrington, E. K. The selective impairment of semantic memory. Q. J. Exp. Psychol. 27, 635–657 (1975). Classic paper first reporting the syndrome that is now known as semantic dementia.

    Article  CAS  PubMed  Google Scholar 

  3. Snowden, J. S., Goulding, P. J. & Neary, D. Semantic dementia: a form of circumscribed cerebral atrophy. Behav. Neurol. 2, 167–182 (1989).

    Article  Google Scholar 

  4. Hodges, J. R., Graham, N. & Patterson, K. Charting the progression in semantic dementia: implications for the organisation of semantic memory. Memory 3, 463–495 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Bozeat, S., Lambon-Ralph, M. A., Patterson, K. & Hodges, J. R. When objects lose their meanings: what happens to their use? Cogn. Affect. Behav. Neurosci. (in the press).

  6. Rogers, T. T., McClelland, J. L. Patterson, K., Lambon-Ralph, M. A. & Hodges, J. R. A recurrent connectionist model of semantic dementia. Cogn. Neurosci. Soc. Annual Meeting <http://cognet.mit.edu/posters/poster.tcl?publication_id=3664> (1999).

  7. Keil, F. C. Semantic and Conceptual Development: An Ontological Perspective (Harvard Univ. Press, Cambridge, Massachusetts, 1979).

    Book  Google Scholar 

  8. Mandler, J. M. How to build a baby: II. Conceptual primitives. Psychol. Rev. 99, 587–604 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Mandler, J. M. Perceptual and conceptual processes in infancy. J. Cogn. Dev. 1, 3–36 (2000). Reviews 10 years of research on progressive differentiation of conceptual knowledge in infancy.

    Article  Google Scholar 

  10. Mandler, J. M., Bauer, P. J. & McDonough, L. Separating the sheep from the goats: differentiating global categories. Cogn. Psychol. 23, 263–298 (1991).

    Article  Google Scholar 

  11. Mandler, J. M. & McDonough, L. Concept formation in infancy. Cogn. Dev. 8, 291–318 (1993).

    Article  Google Scholar 

  12. Pauen, S. The global-to-basic shift in infants' categorical thinking: first evidence from a longitudinal study. Int. J. Behav. Dev. 26, 492–499 (2002).

    Article  Google Scholar 

  13. Rakison, D. in Early Concept and Category Development: Making Sense of the Blooming, Buzzing Confusion (eds Oakes, L. M. & Rakison, D. H.) (Oxford Univ. Press, New York, in the press).

  14. Mareschal, D. Infant object knowledge: current trends and controversies. Trends Cogn. Sci. 4, 408–416 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Quinn, P. C. in Blackwell Handbook of Childhood Cognitive Development (ed. Goswami, U.) 84–101 (Blackwell, Oxford, UK, 2002).

    Book  Google Scholar 

  16. Collins, A. M. & Quillian, M. R. Retrieval time from semantic memory. J. Verbal Learn. Verbal Behav. 8, 240–248 (1969).

    Article  Google Scholar 

  17. McCloskey, M. & Glucksberg, S. Decision processes in verifying category membership statements: implications for models of semantic memory. Cogn. Psychol. 11, 1037 (1979).

    Article  Google Scholar 

  18. Murphy, G. L. & Brownell, H. H. Category differentiation in object recognition: typicality constraints on the basic category advantage. J. Exp. Psychol. Learn. Mem. Cogn. 11, 70–84 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Rips, L. J., Shoben, E. J. & Smith, E. E. Semantic distance and the verification of semantic relations. J. Verbal Learn. Verbal Behav. 12, 1–20 (1973).

    Article  Google Scholar 

  20. Rosch, E. Cognitive representations of semantic categories. J. Exp. Psychol. Gen. 104, 192–233 (1975).

    Article  Google Scholar 

  21. Rumelhart, D. E. & Ortony, A. in Schooling and the Acquisition of Knowledge (eds Anderson, R. C., Sprio, R. J. & Montague, W. E.) 99–135 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1976).

    Google Scholar 

  22. Rumelhart, D. E. & Abrahamson, A. A. A model of analogical reasoning. Cogn. Psychol. 5, 1–28 (1973).

    Article  Google Scholar 

  23. Anderson, J. R. The Adaptive Character of Thought (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1990).

    Google Scholar 

  24. Heit, E. in Rational Models of Cognition (eds Oaksford, M. & Chater, N.) 248–274 (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  25. Heit, E. Properties of inductive reasoning. Psychon. Bull. Rev. 7, 569–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Medin, D. L. & Shaffer, M. M. Context theory of classification learning. Psychol. Rev. 85, 207–238 (1978).

    Article  Google Scholar 

  27. McClelland, J. L. Retrieving general and specific information from stored knowledge of specifics. Proc. Third Annu. Conf. Cogn. Sci. Soc. 170–172 (1981).

  28. Nosofsky, R. M. Attention, similiarity and the identification-categorization relationship. J. Exp. Psychol. Learn. Mem. Cogn. 115, 39–57 (1986).

    CAS  Google Scholar 

  29. Kruschke, J. K. ALCOVE: an exemplar-based connectionist model of category learning. Psychol. Rev. 99, 22–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Nosofsky, R. M. & Palmeri, T. J. An exemplar-based random-walk model of speeded classification learning. Psychol. Rev. 104, 266–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Murphy, G. L. The Big Book of Concepts (MIT Press, Cambridge, Massachusetts, 2002). An up-to-date review of the literature on concepts and semantic cognition.

    Book  Google Scholar 

  32. Rumelhart, D. E., McClelland, J. L. & the PDP Research Group. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations (MIT Press, Cambridge, Massachusetts, 1986). Introduces the parallel distributed processing framework. Chapter 6 describes back-propagation, which is briefly presented in reference 35.

    Book  Google Scholar 

  33. Hinton, G. E. in Parallel Models of Associative Memory (eds Hinton, G. E. & Anderson, J. A.) 161–187 (Erlbaum, Hillsdale, New Jersey, 1981).

    Google Scholar 

  34. Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. A learning algorithm for Boltzmann machines. Cogn. Sci. 9, 147–169 (1985).

    Article  Google Scholar 

  35. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article  Google Scholar 

  36. Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270–280 (1989).

    Article  Google Scholar 

  37. Hinton, G. E. & McClelland, J. L. in Neural Information Processing Systems (ed. Anderson, D. Z.) 358–366 (American Institute of Physics, New York, 1988).

    Google Scholar 

  38. Mazzoni, P., Andersen, R. A. & Jordan, M. I. A more biologically plausible learning rule for neural networks. Proc. Natl. Acad. Sci. USA 88, 4433–4437 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Reilly, R. C. Biologically plausible error-driven learning using local activation differences: the generalized recirculation algorithm. Neural Comput. 8, 895–938 (1996).

    Article  Google Scholar 

  40. Devlin, J. T., Gonnerman, L. M., Andersen, E. S. & Seidenberg, M. S. Category specific semantic deficits in focal and widespread brain damage: a computational account. J. Cogn. Neurosci. 10, 77–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Farah, M. J. & McClelland, J. L. A computational model of semantic memory impairment: modality-specificity and emergent category-specificity. J. Exp. Psychol. Gen. 120, 339–357 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Gotts, S. & Plaut, D. C. The impact of synaptic depression following brain damage: a connectionist account of 'access/refractory' and 'degraded-store' semantic impairments. Cogn. Affect. Behav. Neurosci. 2, 187–213 (2002).

    Article  PubMed  Google Scholar 

  43. Hinton, G. E. in Parallel Distributed Processing: Implications for Psychology and Neurobiology (ed. Morris, R. G. M.) 46–61 (Clarendon, Oxford, 1989).

    Google Scholar 

  44. Hinton, G. E. & Shallice, T. Lesioning a connectionist network: investigations of acquired dyslexia. Technical Report No. CRG-TR-89–3 (University of Toronto, Department of Computer Science, Toronto, Ontario, Canada, 1989).

  45. Lambon Ralph, M. A., McClelland, J. L., Patterson, K., Galton, C. J. & Hodges, J. R. No right to speak? The relationship between object naming and semantic impairment: neuropsychological evidence and a computational model. J. Cogn. Neurosci. 13, 341–356 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. McRae, K., de Sa, V. R. & Seidenberg, M. S. On the nature and scope of featural representations of word meaning. J. Exp. Psychol. Gen. 126, 99–130 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Plaut, D. C. Graded modality-specific specialization in semantics: a computational account of optic aphasia. Cogn. Neuropsychol. 19, 603–639 (2002).

    Article  PubMed  Google Scholar 

  48. Plaut, D. C. & Booth, J. R. Individual and developmental differences in semantic priming: empirical and computational support for a single-mechanism account of lexical processing. Psychol. Rev. 107, 786–823 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Plaut, D. C. & Shallice, T. Deep dyslexia: a case study of connectionist neuropsychology. Cogn. Neuropsychol. 10, 377–500 (1993).

    Article  Google Scholar 

  50. Tyler, L. K., Moss, H. E., Durrant-Peatfield, M. R. & Levy, J. P. Conceptual structure and the structure of concepts: a distributed account of category-specific deficits. Brain Lang. 75, 195–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Tyler, L. K. & Moss, H. E. Towards a distributed account of conceptual knowledge. Trends Cogn. Sci. 5, 244–252 (2001).

    Article  PubMed  Google Scholar 

  52. Mareschal, D., French, R. M. & Quinn, P. C. A connectionist account of asymmetric category learning in early infancy. Dev. Psychol. 36, 635–645 (2000).

    Article  PubMed  Google Scholar 

  53. Mareschal, D., Plunkett, K. & Harris, P. A computational and neuropsychological account of object-oriented behaviours in infancy. Dev. Sci. 2, 306–317 (1999).

    Article  Google Scholar 

  54. McClelland, J. L. in Parallel Distribured Processing: Implications for Psychology and Neurobiology (Morris, R. G. M.) 8–45 (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  55. Munakata, Y., McClelland, J. L., Johnson, M. H. & Siegler, R. S. Rethinking infant knowledge: toward an adaptive process accout of successes and failures in object permanence tasks. Psychol. Rev. 104, 686–713 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Munakata, Y. & McClelland, J. L. Connectionist models of development. Dev. Sci. (in the press).

  57. Quinn, P. C. & Johnson, M. H. The emergence of perceptual category representations in young infants: A connectionist analysis. J. Exp. Child Psychol. 66, 236–263 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Schyns, P. G. A modular neural network model of concept acquisition. Cogn. Sci. 15, 461–508 (1991).

    Article  Google Scholar 

  59. Shultz, T. R., Mareschal, D. & Schmidt, W. C. Modeling cognitive development of balance scale phenomena. Machine Learn. 16, 57–86 (1994).

    Google Scholar 

  60. Rumelhart, D. E. in An Introduction to Neural and Electronic Networks (eds Zornetzer, S. F., Davis, J. L. & Lau, C.) 405–420 (Academic, New York, 1990).

    Google Scholar 

  61. Rumelhart, D. E. & Todd, P. M. in Attention and Performance XIV: Synergies in Experimental Psychology, Artifical Intelligence, and Cognitive Neuroscience (eds Meyer, D. E. & Kornblum, S.) 3–30 (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  62. Flavell, J. The Developmental Psychology of Jean Piaget (Van Nostrand, New York, 1963).

    Book  Google Scholar 

  63. McClelland, J. L., McNaughton, B. L. & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995). Elaborates the complementary learning system theory that is described briefly in the current article.

    Article  PubMed  Google Scholar 

  64. Quinn, P. C. & Johnson, M. H. Global-before-basic object categorization in connectionist networks and 2-month-old infants. Infancy 1, 31–46 (2000).

    Article  PubMed  Google Scholar 

  65. Bloom, P. How Children Learn the Meaning of Words (MIT Press, Cambridge, Massachusetts, 2000).

    Book  Google Scholar 

  66. McCloskey, M. & Cohen, N. J. in The Psychology of Learning and Motivation (ed. Bower, G. H.) 109–165 (Academic, New York, 1989).

    Google Scholar 

  67. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    Article  CAS  Google Scholar 

  68. Milner, P. A cell assembly theory of hippocampal amnesia. Neuropsychologia 27, 23–30 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Rolls, E. T. in An Introduction to Neural and Electronic Networks (eds Zornetzer, S. F., Davis, J. L. & Lau, C.) 73–90 (Academic, San Diego, California, 1990).

    Google Scholar 

  70. Alvarez, P. & Squire L. R. Memory consolidation and the medial temporal lobe: a simple network model. Proc. Natl Acad. Sci. USA 91, 7041–7045 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurosurg. Neurol. Psychiatry 20, 11–21 (1957).

    Article  CAS  Google Scholar 

  72. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys and humans. Psychol. Rev. 99, 195–231 (1992). A useful overview of amnesia resulting from lesions to the medial temporal lobes.

    Article  CAS  PubMed  Google Scholar 

  73. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Cipolotti, L. et al. Long-term retrograde amnesia: the crucial role of the hippocampus. Neuropsychologia 39, 151–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Norman, K. A. & O'Reilly, R. C. Modeling hippocampal and neocortical contributions to recognition memory: a complementary learning systems approach. Psychol. Rev. (in the press).

  76. Hodges, J. R., Patterson, K., Oxbury, S. & Funnell, E. Semantic dementia: progressive fluent aphasia with temporal lobe atrophy. Brain 115, 1783–1806 (1992).

    Article  PubMed  Google Scholar 

  77. Garrard, P. & Hodges, J. R. Semantic dementia: clinical, radiological, and pathological perspectives. J. Neurol. 247, 409–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Rogers, T. T. & McClelland, J. L. Semantic Cognition: A Parallel Distributed Processing Approach (MIT Press, Cambridge, Massachusetts, in the press). A full presentation of the PDP approach.

  79. Mervis, C. B. in Concepts and Conceptual Development: Ecological and Intellectual Factors in Categorization (ed. Neisser, U.) 201–233 (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  80. Jolicoeur, P., Gluck, M. & Kosslyn, S. M. Pictures and names: making the connection. Cogn. Psychol. 19, 31–53 (1984).

    Google Scholar 

  81. Rosch, E., Mervis, C. B., Gray, W., Johnson, D. & Boyes-Braem, P. Basic objects in natural categories. Cogn. Psychol. 8, 382–439 (1976).

    Article  Google Scholar 

  82. Brown, R. A First Language (Harvard Univ. Press, Cambridge, Massachusetts, 1973).

    Book  Google Scholar 

  83. MacWhinney, B. The CHILDES Project: Tools for Analyzing Talk (Lawrence Erlbaum Associates, Mahwah, New Jersey, 2000).

    Google Scholar 

  84. Carey, S. Conceptual Change in Childhood (MIT Press, Cambridge, Massachusetts, 1985). Seminal studies of conceptual reorganization in children.

    Google Scholar 

  85. Keil, F. C. in The Epigenesis of Mind: Essays on Biology and Cognition (eds Carey, S. & Gelman, R.) 237–256 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1991).

    Google Scholar 

  86. Murphy, G. L. & Medin, D. L. The role of theories in conceptual coherence. Psychol. Rev. 92, 289–316 (1985).

    Article  CAS  PubMed  Google Scholar 

  87. Gopnik, A. & Wellman, H. M. in Mapping the Mind: Domain Specificity in Cognition and Culture (eds Hirschfeld, L. A. & Gelmans, S. A.) (Cambridge Univ. Press, Cambridge, 1994). One of the most explicit attempts to articulate the nature of 'theory theory'.

    Google Scholar 

  88. Wilson, R. A. & Keil, F. C. in Explanation and Cognition (eds Keil, F. C. & Wilson, R. A.) 87–114 (MIT Press, Boston, Massachusetts, 2000).

    Google Scholar 

  89. Gelman, R. First principles organize attention to and learning about relevant data: Number and the animate/inanimate distinction as examples. Cogn. Sci. 14, 79–106 (1990).

    Article  Google Scholar 

  90. Macario, J. F. Young children's use of color in classification: Foods and canonically colored objects. Cogn. Dev. 6, 17–46 (1991).

    Article  Google Scholar 

  91. Gelman, S. A. & Markman, E. M. Categories and induction in young children. Cognition 23, 183–209 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. Kuhn, T. The Structure of Scientific Revolutions (Univ. Chicago Press, Chicago, 1962).

    Google Scholar 

  93. Ahn, W. -K. Why are different features central for natural kinds and artifacts?: The role of causal status in determining feature centrality. Cognition 69, 135–178 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Ahn, W., Gelman, S., Amsterlaw, J. A., Hohenstein, J. & Kalish, C. W. Causal status effect in children's categorization. Cognition 76, B35–B43 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Gopnik, A. & Sobel, D. M. Detecting blickets: how young children use information about novel causal powers in categorization and induction. Child Dev. 71, 1205–1222 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Keil, f. Concepts, Kinds, and Cognitive Development (MIT Press, Cambridge, Massachusetts, 1989). Presents key findings relevant to the role of causal mechanisms in determining what kind of thing an object is.

    Google Scholar 

  97. Elman, J. L. Finding structure in time. Cogn. Sci. 14, 179–211 (1990).

    Article  Google Scholar 

  98. Cleeremans, A., Servan-Schreiber, D. & McClelland, J. L. Finite state automata and simple recurrent networks. Neural Comput. 1, 372–381 (1989).

    Article  Google Scholar 

  99. Rogers, T. T. & Griffin, R. in Proc. 13th Biennial Int. Conf. Infant Studies (eds Schmuckler, M. A. Trehub, S. E. & Kosarev, M. F.) 625 (International Society for Infant Studies, 2002).

    Google Scholar 

  100. St. John, M. F. The story Gestalt: a model of knowledge-intensive processes in text comprehension. Cogn. Sci. 16, 271–306 (1992).

    Article  Google Scholar 

  101. Marcus, G. F. The Algebraic Mind (MIT Press, Cambridge, Massachusetts, 2001). Critique of the parallel distributed processing framework, offering an alternative perspective on the basic nature of human cognitive and semantic processing.

    Book  Google Scholar 

  102. Carey, S. & Spelke, E. in Domain-Specific Knowledge and Conceptual Change (ed. Hirschfeld, L. A.) 169–200 (Cambridge Univ. Press, New York, 1994).

    Google Scholar 

  103. Barsalou, L. W., Simmons, W. K., Barbey, A. & Wilson, C. D. Grounding conceptual knowledge in modality-specific systems. Trends Cogn. Sci. (in the press).

  104. Damasio, A. R. The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1, 123–132 (1989).

    Article  Google Scholar 

  105. Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L. & Ungerleider, L. G. Discrete cortical regions associated with knowledge of color and knowledge of action. Science 270, 102–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Kellenbach, M. L., Brett, M. & Patterson, K. Actions speak louder than functions: the importance of manipularity and action in tool representation. J. Cogn. Neurosci. 15, 30–46 (2003).

    Article  PubMed  Google Scholar 

  107. Kellenbach, M. L., Brett, M. & Patterson, K. Larger, colorful, or noisy? Attribute- and modality-specific activations during retrieval of perceptual attribut knowledge. Cogn. Affect. Behav. Neurosci. 1, 207–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Martin, A. & Chao, L. L. Semantic memory in the brain: structure and processes. Curr. Opin. Neurobiol. 11, 194–201 (2001). A useful contemporary review of findings on semantic representation in the brain.

    Article  CAS  PubMed  Google Scholar 

  109. Warrington, E. K. & Shallice, T. Category specific semantic impairments. Brain 107, 829–854 (1984). Seminal report of category-specific deficits in semantic knowledge.

    Article  PubMed  Google Scholar 

  110. Rogers, T. T. & Plaut, D. C. in Category Specificity in Mind and Brain (eds Forde, E. & Humphreys, G.) 251–289 (Psychology Press, East Sussex, UK, 2002).

    Google Scholar 

  111. Gonnerman, L. M., Andersen, E. S., Devlin, J. T., Kempler, D. & Seidenberg, M. S. Double dissociation of semantic categories in Alzheimer's disease. Brain Lang. 57, 254–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Allport, D. A. in Current Perspectives in Dysphasia (eds Newman, S. K. & Epstein, R.) 207–244 (Churchill Livingstone, Edinburgh, 1985).

    Google Scholar 

  113. Caramazza, A. & Shelton, J. R. Domain-specific knowledge systems in the brain: the animate-inanimate distinction. J. Cogn. Neurosci. 10, 1–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Warrington, E. K. & McCarthy, R. Categories of knowledge: further fractionation and an attempted integration. Brain 110, 1273–1296 (1987).

    Article  PubMed  Google Scholar 

  115. Jacobs, R. A. & Jordan, M. I. Computational consequences of a bias toward short connections. J. Cogn. Neurosci. 4, 323–336 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Kohonen, T. The self-organizing map. Proc. IEEE 78, 1464–1480 (1990).

    Article  Google Scholar 

  117. Snodgrass, J. G. & Vanderwart, M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J. Exp. Psychol. Learn. Mem. Cogn. 6, 174–215 (1980). | PubMed

    Article  CAS  Google Scholar 

  118. Gelman, R. & Williams, E. M. in Handbook of Child Psychology, Volume II: Cognition, Perception and Development (eds Kuhn, D. & Siegler, R.) 575–630 (John Wiley and Sons, New York, 1997).

    Google Scholar 

  119. Plaut, D. C. Double dissociation without modularity: evidence from connectionist neuropsychology. J. Clin. Exp. Neuropsychol. 17, 291–321 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

What is the parallel distributed process of memory?

Parallel distributed processing in psychology refers to a theoretical approach to understanding how memory is stored and processed, thus suggesting that images and ideas and concepts are distributed throughout the memorializing system at one time.

What is the parallel distributed processing model in memory psychology?

This system is a form of a computational model that helps us to enlighten ourselves about the complex characteristics of human memory functioning.

Which is the best description of semantic memory?

Semantic memory refers to our general world knowledge that encompasses memory for concepts, facts, and the meanings of words and other symbolic units that constitute formal communication systems such as language or math.

How does the parallel distributed processing approach explain learning?

How does the parallel distributed processing approach explain learning? The strength of the connection between items you are learning about increases with practice. schemas and scripts can reconstruct our memories of events and past perceptions in incorrect ways.