Van der waals kräfte wasserstoffbrückenbindungen unterschied

  1. Alle
  2. Chemie
  3. Anorganische Chemie
  4. Zwischenmolekulare Wechselwirkungen

Van der waals kräfte wasserstoffbrückenbindungen unterschied

In diesem Artikel geht es um Wasserstoffbrückenbindungen und verschiedene Arten von Van-der-Waals-Wechselwirkungen, welche unter dem Begriff zwischenmolekulare Wechselwirkungen zusammengefasst werden. Vor allem spielen Wasserstoffbrückenbindungen eine bedeutende Rolle in der Natur. Die für die Entwicklung des Lebens auf der Erde wichtige Anomalie des Wassers ist maßgeblich auf
Wasserstoffbrücken zwischen den Molekülen zurückzuführen.

Wasserstoffbrückenbindungen

Wasserstoffbrückenbindungen stellen zwischenmolekulare Wechselwirkungen zwischen einem positiv polarisierten Wasserstoffatom und einem freien Elektronenpaar dar. Es handelt sich hierbei um die stärksten zwischenmolekularen Wechselwirkungen.

Van der waals kräfte wasserstoffbrückenbindungen unterschied

Dipol-Dipol-Wechselwirkungen

Dipol-Dipol-Wechselwirkungen sind zwischenmolekulare Wechselwirkungen zwischen permanenten Dipolen (positiven und negativen Partialladungen). Sie treten demnach bei Molekülen auf, bei denen der positive Ladungsschwerpunkt nicht mit dem negativen Ladungsschwerpunkt zusammenfällt.

Van der waals kräfte wasserstoffbrückenbindungen unterschied

Van-der-Waals-Kräfte

Van-der-Waals-Kräfte sind zwischenmolekulare Wechselwirkungen zwischen ständig wechselnden spontanen und induzierten Dipolen.

Van der waals kräfte wasserstoffbrückenbindungen unterschied

Spontane Dipole entstehen durch die ständige Bewegung der Elektronen. Dabei kann es passieren, dass beide Elektronen sich gleichzeitig mehr bei einem der beiden Atome aufhalten. Der spontane Dipol wirkt sich nun auch auf die umliegenden Moleküle aus.

Da sich Elektronen gegenseitig abstoßen, werden die Elektronen in einem umliegenden Molekül durch die Elektronen des spontanen Dipols abgestoßen und zu dem entgegengesetzten Atom gelenkt. Dadurch entsteht ein weiterer Dipol, welchen wir induzierten Dipol nennen. Jetzt liegt eine Dipol-Dipol-Wechselwirkung vor. Die van-der-Waals Wechselwirkungen sind schwächer als Dipol-Dipol-Wechselwirkungen, da die entstandenen Dipole durch die Bewegung der Elektronen nicht dauerhaft sind und wieder unpolare Moleküle resultieren.

Hast du dich schon einmal gefragt, wieso Geckos selbst eine spiegelglatte Oberfläche hochklettern können oder kopfüber daran laufen können ohne herunterzufallen? Wenn man sich ihre Füße anguckt, haben diese zum Beispiel keine Saugnäpfe. Wie also schaffen diese Tiere sich der Erdanziehung zu widersetzen? Diese Fähigkeit haben Geckos der Anatomie ihrer Füße und unter anderem den Van-der-Waals-Kräften zu verdanken.

Van-der-Waals-Kräfte: Definition

Zwischen Molekülen existieren verschiedene intermolekulare Kräfte. Zu diesen intermolekularen Kräften gehören neben den Wasserstoffbrückenbindungen und Dipol-Dipol-Kräften auch die Van-der-Waals-Kräfte. Diese werden in der Chemie zu den schwachen chemischen Bindungen gezählt, obwohl diese keine echten Bindungen, sondern Wechselwirkungen sind.

Bei den Van-der-Waals-Kräften handelt sich um Anziehungskräfte, die aufgrund von spontaner Polarisationen der Atome auftreten. Wichtig sind diese Kräfte vor allem zwischen ungeladenen Molekülen, die außerdem keinen permanenten Dipol besitzen.

Van-der-Waals-Kräfte kommen eigentlich zwischen fast allen Teilchen vor. Meistens sind jedoch andere Bindungen und Wechselwirkungen, zum Beispiel Ionenbindungen oder Dipol-Dipol-Wechselwirkungen, vorhanden, die deutlich stärker sind als die Van-der-Waals-Kräfte. Diese überdecken somit die Van-der-Waals-Kräfte.

Als Dipole bezeichnet man Moleküle, die aufgrund der Position der Ladung Enden mit entgegengesetzter Ladung besitzen. Der Dipol kann permanent sein wie in Molekülen, bei denen die Elektronen mithilfe der Elektronegativität, also der Anziehung der Elektronen durch die einzelnen Atome auf eine Seite verschoben werden. In jedem Atom treten Dipole aber auch spontan auf, indem die Elektronen sich zu einem bestimmten Zeitpunkt zufällig alle auf einer Seite befinden.

Van-der-Waals-Kräfte sind schwache ungerichtete Anziehungskräften zwischen Molekülen, die nicht geladen sind und keinen permanenten Dipol besitzen.

Van-der-Waals-Kräfte: Erklärung

Ein spontaner Dipol entsteht

Um Atomkerne bewegen sich Elektronen permanent in Orbitalen. Gehen zwei Atome Bindungen ein, entsteht ein Bindungsorbital, innerhalb welches sich die Elektronen bewegen. Kommt es in diesem Bindungsorbital zwischenzeitlich zur Ungleichverteilung der Elektronen um die Atomkerne – sind die Elektronen also eher um einem Atomkern lokalisiert – hat das Molekül spontan ein positiv und ein negativ geladenes Ende. Das Molekül ist also ein Dipol. Es hat zwei Pole.

Van der waals kräfte wasserstoffbrückenbindungen unterschied
Abbildung 1: Entstehung eines spontanen Dipols

Wie du in der Abbildung auch siehst, kann ein Orbital mit einem Aufenthaltsraum der Elektronen bezeichnet werden. Innerhalb dieser Grenzen besteht eine 90%-ige Wahrscheinlichkeit, dass sich die Elektronen hier befinden. Die Verteilung innerhalb dieses Raums ist allerdings nicht festgelegt. Genauso kreisen Elektronen auch nicht auf Kreisbahnen in diesem Bereich. Sie sind frei beweglich, wodurch erst Dipole entstehen können.

Induzieren eines Dipols im Nachbarmolekül

Nun kann dieses Molekül mit dem spontanen Dipol, auch temporärer Dipol genannt, in einem benachbarten Molekül ebenfalls zu einem Dipol führen. Es induziert also einen anderen Dipol. Das kommt dadurch zustande, dass das positive Ende des Moleküls mit dem spontanen Dipolmoment die Elektronen des noch neutralen Moleküls auf eine Seite zieht. Dadurch hat auch das zweite Molekül ebenfalls eine ungleiche Elektronenverteilung im Bindungsorbital.

Van der waals kräfte wasserstoffbrückenbindungen unterschied
Abbildung 2: Induktion eines Dipols in einem Molekül mit symmetrischer Ladungsverteilung

Die Van-der-Waals-Kräfte wirken

Die Moleküle, die jetzt ein spontanes und induziertes Dipol besitzen, ziehen sich an. Denn es herrscht eine elektrostatische Anziehung – die Van-der-Waals-Kräfte – zwischen den Gegenpolen beider Moleküle. Eine alternative Situation wäre, wenn zwei Moleküle mit spontanen Dipolen direkt aufeinander treffen und sich entsprechend ihrer Pole zueinander ausrichten und es so zur Anziehung zwischen beiden kommt.

Van der waals kräfte wasserstoffbrückenbindungen unterschied
Abbildung 3: Van-der-Waals-Kräfte zwischen Molekülen

Damit ein spontanes Dipol eines Moleküls ein Dipol in einem anderen Molekül induzieren kann und es so zu Van-der-Waals-Kräften kommt, müssen sich die Moleküle sehr nah sein. Die Wechselwirkungsenergie, also die Stärke dieser Kräfte, ist proportional zur negativen sechsten Potenz des Abstandes. Wird der Abstand also um 2 größer, nehmen die Van-der-Waals-Kräfte um das 64-fache ab.

Eine Annäherung ist umso schwieriger, je höher die Temperatur ist. Und je höher die Temperatur steigt, umso mehr überwiegt die thermische Bewegung gegenüber der Van-der-Waals-Kräften, sodass diese überwunden werden können.

Van-der-Waals-Kräfte: Beispiele

Van-der-Waals-Kräfte in Alkanen

Der Einfluss der Van-der-Waals-Kräfte lässt sich am Beispiel der Alkane verdeutlichen: Mit zunehmender Kettenlänge nimmt der Siedepunkt zu. So hat Ethan zum Beispiel einen Siedepunkt von -88,6 °C, während n-Heptan einen Siedepunkt von 98,4 °C hat. Dieses Verhalten lässt sich durch die Van-der-Waals-Kräfte erklären. Die Oberfläche langer Moleküle ist größer als die der kurzen Moleküle.

Dadurch wirken mehr Van-der-Waals-Kräfte zwischen den einzelnen Ketten (Van-der-Waals-Kräfte addieren sich auf) und es braucht eine höhere Temperatur, um diese zu überwinden.

Van der waals kräfte wasserstoffbrückenbindungen unterschied
Abbildung 4: Van-der-Waals-Kräfte zwischen Ethan-Molekülen (links) und Heptan-Molekülen (rechts)

Heptan könnte also ohne Van-der-Waals-Kräfte kaum als Flüssigkeit vorliegen. Auch anderen unpolaren Substanzen könnten nicht im flüssigem oder festem Aggregatszustand auftreten.

Van-der-Waals-Kräfte bei Konstitutionsisomeren der Alkane

Je verzweigter Alkane werden, desto niedriger wird der Siedepunkt. Das liegt daran, dass mit steigender Verzweigung in den Isomeren die Oberfläche des Moleküls verringert wird. Dadurch können zwischen den einzelnen Molekülen weniger Kräfte wirken. So hat n-Heptan neun Konstitutionsisomere, die unterschiedliche Siedepunkte besitzen. Beispielsweise hat 2-Methylhexan eine Siedetemperatur von 90 °C, 3,3-Diemthylpentan eine Siedetemperatur von 86 °C und 2,2-Dimehtylpentan 79 °C.

Van der waals kräfte wasserstoffbrückenbindungen unterschied
Abbildung 5: Konstitutionsisomere von Heptan

Van-der-Waals-Kräfte in Festkörpern

Van-der-Waals-Bindungen können auch Festkörper zusammenhalten. Ein Beispiel dafür sind die Edelgaskristalle, die nur bei sehr tiefen Temperaturen vorkommen und allein auf den Van-der-Waals-Kräften beruhen. Die neutralen Edelgasatome können sich bei tiefen Temperaturen nahe genug kommen, sodass die temporären Dipole interagieren können.

Van-der-Waals-Kräfte und der Gecko

Jetzt kann man auch erklären, wieso Geckos nicht von der Decke fallen. Geckos haben unter ihren Füßen sogenannte Spatulae. Diese sind Hafthärchen, die nur 15 Nanometer dick sind. Milliarden solcher Hafthärchen vergrößern die Oberfläche der Fußunterseite, wodurch eine größere Kontaktfläche entsteht. Jedes dieser Hafthärchen interagiert mittels Van-der-Waals-Kräfte mit Oberflächen. Diese einzelnen kleinen Kräfte addieren sich zu einer Kraft von etwa 40 Newton auf und halten den Gecko an der Decke.

Van der Waals Kräfte - Das Wichtigste

  • Van-der-Waals-Kräfte beeinflussen die Stoffeigenschaften unpolarer Substanzen, wie Siedepunkt und Schmelztemperatur.
  • Bei Van-der-Waals-Kräften handelt es sich um schwache Anziehungskräfte zwischen temporären Dipolen.
  • Die temporären Dipole im Molekül treten durch die Schwankungen der Elektronenverteilung im Bindungsorbital auf.
  • Je größer eine Oberfläche ist, desto mehr Van-der-Waals-Kräfte können wirken.
  • Van-der-Waals-Kräfte sind additiv.
  • Ohne Van-der-Waals-Kräfte wären unpolare Stoffe nur gasförmig.

Was versteht man unter den Van

Van-der-Waals-Kräfte. Nach van der Waals benannte zwischenmolekulare Kräfte, die zwischen Atomen bzw. Molekülen auftreten. Diese Anziehungskräfte entstehen dadurch, dass Atome äußerst kurzlebige Dipole bilden können.

Was unterscheidet eine Wasserstoffbrücke von einer echten Bindung?

Das elektronegative Atom ist häufig Stickstoff (N), Sauerstoff (O) oder Fluor (F) und trägt mindestens ein freies Elektronenpaar. Wasserstoffbrückenbindungen sind keine echten chemischen Bindungen, weil sie beispielsweise weniger stark als Atombindungen oder ionische Bindungen sind.

Was ist stärker van der Waals Kräfte oder Wasserstoffbrückenbindung?

Aufgrund ihrer Stärke unterscheidet man drei Typen zwischenmolekularer Kräfte: Wasserstoff-Brücken-Bindung – Dipol-Dipol-Wechselwirkung – Van-der-Waals-Kraft Eine Wasserstoffbrücke ist stärker als eine Dipol-Dipol-Wechselwirkung, welche wiederum die Stärke einer Van-der-Waals-Kraft übertrifft.

Was ist der Unterschied zwischen Dipol Dipol Wechselwirkungen und Wasserstoffbrückenbindungen?

In Dipolen fallen die Ladungsschwerpunkte (Partialladungen) nicht zusammen. Dipol-Dipol-Kräfte treten stets zwischen permanenten Dipolen auf. Die Wasserstoffbrückenbindungen sind ein Sonderfall der Dipol-Dipol-Wechselwirkungen. Intermolekulare Wechselwirkungen sind schwächer als die intramolekularen Bindungen.